DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING | | | | | | | R | 20 CO | -PO-PS | O GRA | ND MA | ATRIX | | 7. 7. 11-W | | | | |----------|-----------------|----------|---------|----------|-----------|--------------------|----------|----------------------|----------|-----------|----------|------------|------------|------------|------------|----------| | By | the e | end of e | each co | urse st | udent | will be | able to | 0 | | | | | | | | | | | | | | | | | | | 1-1 | | | | | | | | | | | CO1 | Solve | the dif | ferentia | l equati | ons rela | ated to | various | engine | ering fi | elds | | | | | | | | CO2 | | | | | | l life pr | | | | | | | | | | | | CO3 | Famili | arize w | ith fun | ctions o | f sever | al varial | oles wh | ich is us | seful in | optimiza | ition | | | | | | | CO4 | Apply | double | integra | ation te | chniqu | es in ev | aluatin | gareas | bounde | ed by reg | ion. | | | | | 20BS1101 | Mathematics – I | CO5 | | - | | ls of ca
coordi | | _ | dimen | sions. S | Student | s will be | come fan | niliar wit | h 2-dime | ensional | | BS1 | em | | 1 204 | 200 | 200 | DO 4 | 205 | 200 | | 200 | | 2010 | 2011 | 2012 | DC04 | 2000 | | 20 | ath | 604 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | Ĕ | CO1 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO2 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO3 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO4 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO5 | 3 | 2 | - | _ | - | - | - | - | _ | - | - | 1 | - | - | | | | CO1 | | | | ciples s | | nterfere | ence and | d diffra | ction to | design a | nd enhar | nce the re | esolving p | oower | | | | CO2 | Learn | the bas | sic conc | epts of | LASEI | R light S | Sources | and Ap | ply the | m to hol | ography | | | | | | | CO3 | Study | the m | agnetic | and die | electric | materia | ls to er | hance | the util | ity aspec | ts of mat | terials. | | | | | S | CO4 | Learn | the fur | damen | tal con | cepts o | f Quant | um beh | aviour | of matt | er. | | | | | | 2 | /sic | CO5 | Identi | fy the t | ype of s | semicor | nductor | s using | Hall Eff | ect. | | | | | | | | 110 | Ph) | | | | , | | , | | | | | | | | | | | 20BS1105 | pplied Physics | | PO1 | PO
2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | Ар | CO1 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO2 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO3 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO4 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO5 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | | 1 | 1 | 1 | 1 | 1 | | | | CO1 | | • | | • | • | ces of sp
sh (L3) | | nforma | tion fro | m social | or transa | ectional d | lialogues | | | | _ | CO2 | | | | | | | | | | | d forms (| | | | | | lish | CO3 | speak | clearly | on a sp | ecific to | opic usi | ng suita | ble dis | course | marker | s in infor | mal discı | ussions (I | L3) | | | 101 | English | CO4 | | | | | | | | | | ening te | | | | | | 51 | /e | CO5 | | | | | | | | | | t/table (I | _4) | | | | | 20HS1101 | ati∿ | CO6 | take n | otes w | hile list | ening to | a talk, | /lecture | to ans | wer que | estions | (L3) | | | | | | " | Communicative | | | | | | | | | | | | | | | | | | mu | - | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | mo | CO1 | - | - | - | - | - | - | - | - | 2 | 3 | - | 1 | - | - | | | Ŭ | CO2 | - | - | - | - | - | - | - | - | 2 | 3 | - | 1 | - | - | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | | | | | | | | | | | | 17.00-20 | | | | |-----------|---|---------------------------------|--|--|---|---|---|---|------------------------------------|--------------------------------------|--
--|---|--|--|-----------------------| | | | CO3 | - | - | - | - | - | - | - | - | 2 | 3 | - | 1 | - | - | | | | CO4 | - | - | - | - | - | - | - | - | 2 | 3 | - | 1 | - | - | | | | CO5 | - | - | - | _ | - | _ | - | - | 2 | 3 | - | 1 | _ | - | | | | CO6 | _ | _ | _ | - | _ | _ | - | - | 2 | 3 | _ | 1 | _ | - | | | | | | | <u> </u> | | 1 | | | | | | | _ | l | | | | | CO1 | Undor | atand a | laamiths | na and | hasis to | i | or of (| 7 | | | | | | | | | g C | CO1 | | | lgorithr | | | | | | 1. | | | | | | | | usir | CO2 | | • | ms using | | | | | | | | | | | | | | ing | CO3 | | | | | • | | | or linea | ar data | handling | | | | | | | No. | CO4 | | | ne use o | | | | | | | | | | | | | 01 | m S | CO5 | Imple | ment va | arious o | peration | ns on c | lata file | S | | | | | | | | | 11 | pple | | | | | | | | | | | | | | | | | 20ES1101 | . Pro | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | 7 | for | CO1 | 1 | 2 | 3 | 2 | 1 | - | - | - | 3 | 3 | 1 | 2 | 1 | 2 | | | nin | CO2 | 2 | 3 | 3 | 2 | - | - | - | - | 1 | 1 | 2 | 2 | 2 | 2 | | | J.W. | CO3 | 3 | 3 | 3 | 2 | - | - | - | - | 2 | 1 | 2 | 2 | 2 | 3 | | | Programming for Problem Solving using C | CO4 | 2 | 2 | 2 | 2 | - | - | - | - | 2 | 1 | 2 | 2 | 2 | 2 | | | Pr | CO5 | 2 | 2 | 2 | 2 | - | - | - | - | 2 | 1 | 2 | 2 | 1 | 2 | | | | l. | | l | | I | 1 | l | I | I | ı | ı | | I | I | l. | | | | CO1 | Prena | re engi | neering | drawin | gs as ne | er BIS o | onvent | ions {U | Indersta | nd level, | KL2} | | | | | | | CO2 | | | | | | | | | | | | ces using | CAD so | ftware | | | r, | 002 | | ly level | | 01101010 | . 01 010 | | no proj | | 01 21110 | 5 4114 1 10 | 50110 | | , 0112 50 | 201101 | | | esig | CO3 | | • | | of ortho | graphic | projec | tions of | f Solids | to repr | esent en | gineerin | ginforma | ation/cor | cepts | | | Ď | | | | the sam | | | | | | - | | B | 5 | | | | | anc | CO4 | | | | | | | | | | | s in Real | time Apr | olications | {Apply | | 02 | ics | | level, | | | | | | | | | | | | | C -1-1-7 | | 20ES1102 | phi | CO5 | | | netric di | rawings | of sim | ole obie | cts rea | ding the | o ortho | graphic n | rojectio | ns of tho | | | | OES | Gra | | object | • | | _ | | , | | unig un | | | | 113 01 1110. | se | | | 7 | ng (| | | | vze ieve | · · · · · · · · · · · · · · · · · · · | | | | unig tin | | 5. a b e b | , | 113 01 1110. | se | | | | ·= | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | ē | CO1 | PO1
2 | | | | PO5
3 | PO6 | PO7
- | | | | , | | | PSO2 | | | ineer | CO1 | | PO2 | PO3 | PO4 | | | | | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | :ngineer | CO2 | 2 | PO2
1
1 | PO3
1
1 | PO4
- | 3 | - | | | PO9 | PO10
2
2 | PO11 | PO12
1
1 | PSO1 | - | | | Engineering Graphics and Design | CO2
CO3 | 2 2 2 | PO2
1
1
2 | PO3 1 1 2 | PO4
-
- | 3 3 3 | - | - | | PO9
-
- | PO10
2
2
2 | PO11
- | PO12
1
1
1 | PSO1 | - | | | Engineer | CO2
CO3
CO4 | 2
2
2
2 | PO2
1
1
2
2 | PO3 1 1 2 2 | PO4
-
- | 3
3
3 | -
- | - | | PO9
-
- | PO10
2
2
2
2 | PO11
-
- | PO12
1
1
1
1 | PSO1 | - | | | Engineer | CO2
CO3 | 2 2 2 | PO2
1
1
2 | PO3 1 1 2 | PO4
-
- | 3 3 3 | -
- | - | | PO9
-
- | PO10
2
2
2 | PO11
-
- | PO12
1
1
1 | PSO1 | - | | | Engineer | CO2
CO3
CO4
CO5 | 2
2
2
2
2 | PO2
1
1
2
2
2 | PO3 1 1 2 2 2 | PO4
-
-
-
- | 3 3 3 3 3 | | -
-
- | PO8 | PO9 | PO10
2
2
2
2
2
2 | PO11 | PO12 1 1 1 1 1 1 1 | PSO1 | -
-
-
- | | | | CO2
CO3
CO4 | 2 2 2 2 2 2 identi | PO2 1 1 2 2 2 fy the c | PO3 1 1 2 2 2 2 context, | PO4 topic, a | 3
3
3
3
3 | -
-
-
-
- | -
-
-
-
- | PO8 nforma | PO9 tion fro | PO10 2 2 2 2 2 2 2 m social | PO11 or transa | PO12 1 1 1 1 1 1 1 cetional c | PSO1 lialogues | -
-
-
- | | | | CO2
CO3
CO4
CO5 | 2
2
2
2
2
2
identi
spoke | PO2 1 1 2 2 2 2 fy the cen by na | PO3 1 1 2 2 2 context, ative specifications | PO4 topic, a | 3 3 3 3 3 and piece of Engli | -
-
-
-
-
ees of sp | -
-
-
-
- | PO8 nforma | PO9 tion fro | PO10 2 2 2 2 2 2 2 m social | PO11 or transa | PO12 1 1 1 1 1 1 1 | PSO1 lialogues | -
-
-
- | | | | CO2
CO3
CO4
CO5 | 2
2
2
2
2
2
identi
spoke | PO2 1 1 2 2 2 2 fy the con by naters in in | PO3 1 1 2 2 2 context, tive spectormal | PO4 topic, a eakers of discuss | 3 3 3 3 3 and piece of Englisions (L | | -
-
-
-
-
pecific i | PO8 nforma | PO9 tion from a speci | PO10 2 2 2 2 2 2 2 m social cific topic | PO11 or transac using s | PO12 1 1 1 1 1 uitable d | PSO1 lialogues iscourse | | | | | CO2
CO3
CO4
CO5 | 2
2
2
2
2
2
identi
spoke
marke | PO2 1 1 2 2 2 2 fy the cent by nation in the cent will | PO3 1 1 2 2 2 2 context, tive speciformal | PO4 topic, a eakers of discusseming to | 3 3 3 3 3 and piece of Engli sions (Let a talk/ | | | PO8 nformalearly o | PO9 tion fron a specestions in | PO10 2 2 2 2 2 2 m social eific topion English | PO11 or transac using s | PO12 1 1 1 1 1 cuitable d ate sente | PSO1 lialogues iscourse | -
-
-
- | | 1021 | | CO2
CO3
CO4
CO5 | 2
2
2
2
2
identi
spoke
marke
take n
prope | PO2 1 1 2 2 2 2 fy the cen by naters in interest where substituting the control of the center | PO3 1 1 2 2 2 2 context, tive speciformal hile lister matical | PO4 topic, a eakers of discusseming to | 3 3 3 3 3 and piece of Engli sions (Let a talk/ | | | PO8 nformalearly o | PO9 tion fron a specestions in | PO10
2 2 2 2 2 2 m social eific topion English | PO11 or transac using s | PO12 1 1 1 1 1 cuitable d ate sente | PSO1 lialogues iscourse | -
-
-
- | | S1102L | | CO2
CO3
CO4
CO5 | 2 2 2 2 2 identi spoke market take n prope exami | PO2 1 1 2 2 2 2 fy the con by na ers in innotes where the substitutions in the substitutions in the substitution substi | PO3 1 1 2 2 2 2 context, tive speciformal hile lister matical is (L3) | PO4 topic, a eakers of discussering to structure | 3 3 3 3 3 and piece of Englisions (Lee a talk/res and | es of sp
sh and s
3) | | PO8 nforma learly o wer que | PO9 tion from a special strong in spe | PO10 2 2 2 2 2 2 m social cific topic n English anguage | PO11 or transac using s | PO12 1 1 1 1 1 ctional cuitable d ate sente ely in con | PSO1 lialogues iscourse nces usin | -
-
-
- | | OHS1102L | | CO2
CO3
CO4
CO5 | 2 2 2 2 2 identi spoke marke take n prope exami | PO2 1 1 2 2 2 fy the cen by nates in interest where gramminations summations summations. | PO3 1 1 2 2 context, tive speciformal hile liste matical is (L3) aries base | PO4 topic, a eakers of discussioning to structure seed on a | 3 3 3 3 3 and piece of Engli sions (Leta a talk/res and | ees of sp
sh and s
3)
lecture;
correct | | PO8 nforma learly o wer que orms; an | PO9 tion from a special strong in spe | PO10 2 2 2 2 2 m social eific topic in English anguage | PO11 or transac using s n; formul effective | PO12 1 1 1 1 1 actional cuitable duitable | PSO1 lialogues iscourse nces usin mpetitive herent w | -
-
-
- | | 20HS1102L | | CO2
CO3
CO4
CO5 | 2 2 2 2 2 identi spoke market take n prope exami write interp | PO2 1 1 2 2 2 2 fy the cent by nationers in interest will represent the property of the cent of the property proper | PO3 1 1 2 2 2 2 context, ative speciformal hile lister matical is (L3) aries base a figure. | PO4 topic, a eakers c discussening to structure sed on a /graph/ | 3 3 3 3 and piece of Englisions (Leo a talk/res and | es of spsh and s 3) lecture; correct | | PO8 nforma early o wer que orms; an | PO9 tion from a special strong in a special strong in a special strong in the s | PO10 2 2 2 2 2 2 m social cific topic anguage tening tenin | PO11 or transac using s n; formul effective | PO12 1 1 1 1 ctional cuitable d ate sente ely in confiderate of committee a cooff cooff committee a cooff cooff committee a cooff co | PSO1 lialogues iscourse nces usin mpetitive herent w unication | -
-
-
-
- | | 20HS1102L | | CO2
CO3
CO4
CO5
CO1 | 2 2 2 2 identi spoke market take n prope exami write interp | PO2 1 1 2 2 2 2 fy the cen by nates in interest where gramminations summate or earling a PO2 | PO3 1 1 2 2 context, tive speciformal hile liste matical is (L3) aries base | PO4 topic, a eakers of discussioning to structure seed on a | 3 3 3 3 3 and piece of Englisions (Leta a talk/res and global cet/chart/tet/tet/tet/tet/tet/tet/tet/tet/tet/t | ees of sp
sh and s
3)
lecture;
correct
comprel | | PO8 nforma learly o wer que orms; an | PO9 tion from a special strong in spe | PO10 2 2 2 2 2 2 m social cific topic an English anguage tening t | PO11 or transac using s n; formul effective | PO12 1 1 1 1 1 actional countable duitable duitable duitable duce a coordinate comment of comments. | PSO1 lialogues iscourse nces usin mpetitive herent w | -
-
-
- | | 20HS1102L | | CO2
CO3
CO4
CO5
CO1 | 2 2 2 2 2 identi spoke market take n prope exami write interp | PO2 1 1 2 2 2 2 fy the cent by nationers in interest will represent the property of the cent of the property proper | PO3 1 1 2 2 2 2 context, ative speciformal hile lister matical is (L3) aries base a figure. | PO4 topic, a eakers c discussening to structure sed on a /graph/ | 3 3 3 3 3 and piece of Englisions (Leo a talk/res and global ce/chart/t | es of sp
sh and s
3)
lecture;
correct
comprel
table; an | | PO8 nforma early o wer que orms; an | PO9 tion from a special strong in a special strong in the s | PO10 2 2 2 2 2 2 m social eific topic anguage tening tenin | PO11 or transac using s n; formul effective | PO12 1 1 1 1 1 actional countable duitable | PSO1 lialogues iscourse nces usin mpetitive herent w unication | -
-
-
-
- | | 20HS1102L | Communicative English Lab-I Engineer | CO2
CO3
CO4
CO5
CO1 | 2 2 2 2 identi spoke market take n prope exami write interp | PO2 1 1 2 2 2 2 fy the cen by nates in interest where gramminations summate or earling a PO2 | PO3 1 1 2 2 2 2 context, ative speciformal hile lister matical is (L3) aries base a figure. | PO4 topic, a eakers c discussening to structure sed on a /graph/ | 3 3 3 3 3 and piece of Englisions (Leta a talk/res and global cet/chart/tet/tet/tet/tet/tet/tet/tet/tet/tet/t | ees of sp
sh and s
3)
lecture;
correct
comprel | | PO8 nforma early o wer que orms; an | PO9 tion from a special strong in spe | PO10 2 2 2 2 2 2 m social cific topic an English anguage tening t | PO11 or transac using s n; formul effective | PO12 1 1 1 1 1 actional countable duitable duitable duitable duce a coordinate comment of comments. | PSO1 lialogues iscourse nces usin mpetitive herent w unication | -
-
-
-
- | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | 1 | 1 | | | | | - | Se o control for semiline | Constitution of the second | от оролоо | red Departin | | | | | |-----------|---------------------------------|-----|---|---|----------|----------|----------|----------|---------------------------|----------------------------|-----------|-------------------|------------|------------|-------------------|--------| | | | CO1 | | rehend | | | | | langua | age | | | | | | | | | ing | CO2 | Devel | lop algo | orithms | and fl | owchar | ts | | | | | | | | | | | Solv | CO3 | Desig | gn and o | develop | ment o | f C pro | oblem s | olving | skills. | | | | | | | | | em; | CO4 | Acqu | ire mod | lular pi | rogramı | ning sk | tills. | | | | | | | | | | 20ES1103L | robl | | | | | | | | | | | | | | | | | S11 | or P | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | 20E | ing (| CO1 | 1 | 2 | 3 | 2 | 1 | _ | _ | _ | 3 | 3 | 1 | 2 | 1 | 2 | | | amm | CO2 | 2 | 3 | 3 | 2 | _ | _ | _ | _ | 1 | 1 | 2 | 2 | 2 | 2 | | | Programming for Problem Solving | CO3 | 3 | 3 | 3 | 2 | _ | _ | _ | _ | 2 | 1 | 2 | 2 | 2 | 3 | | | Ь | CO4 | 2 | 2 | 2 | 2 | _ | _ | - | - | 2 | 1 | 2 | 2 | 2 | 2 | | | Į | | I | | | | | | | | ı | 1 | <u>I</u> | | <u>I</u> | 1 | | | | CO1 | Apply | y know | ledge o | f Interf | erence | concep | ts of li | ght(L3) |) | | | | | | | | | CO2 | | y know | | | | | | | | ated | | | | | | | | CO3 | | the app | | | | | | | | | | | | | | | Lab | CO4 | Defin | Define Acoustics of buildings and NDT applications (L1) Define material properties and nuclear power generation(L1) | | | | | | | | | | | | | | 19 | ics | CO5 | Define material properties and nuclear power generation(L1) | | | | | | | | | | | | | | | 20BS1106L | Physics Lab | | | | | | | | | | | | | | | | | BS: | d P | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | 20 | Applied | CO1 | 3 | 3 | 3 | 2 | 2 | - | - | - | - | - | - | - | - | - | | | App | CO2 | 2 | 2 | 2 | 3 | 2 | - | - | - | - | - | - | - | - | - | | | | CO3 | 3 | 2 | 2 | 2 | 3 | - | - | - | - | - | - | - | - | - | | | | CO4 | 2 | 2 | 3 | 3 | 3 | - | - | - | - | - | - | - | - | - | | | | CO5 | 3 | 2 | 3 | 2 | 2 | - | - | - | - | - | - | - | - | - | 00: | Б. 1 | | • | , • .1 | | | <u> - </u> | 1. | • | . 1 | | 1: cc | 1 1.7 | | | | | CO1 | (EVA | LUAT | E) | | | | | | | | | | algorith | | | | | CO2 | and b | ackwar | d interp | | | | | | | Gauss Seand unequ | | | wton's fo
LVE, | orward | | | | 663 | | Y,FIN | | .: | | | : | aal. C | | | :cc | | | | | | | CO3 | | | _ | | | | _ | | | • | | • | ons to its | | | | | | | tical cor
/,FIND) | nputati | ons and | a aiso b | у саріас | te the t | ranstor | ms tor | solving d | irrerentia | ai equatio | ons (SOL\ | /E, | | 202 | tics | CO4 | | <u> </u> | ute the | Fourie | r series | of perio | ndic sig | nals (SC | DIVF A | PPLY, FIN | ID. ANAI | YSF) | | | | 20BS1202 | ma | CO5 | 1 | | | | | | | | | | | - | form to i | range | | 20B | Mathematics | | | n-perio | | | _ | | | | a. | | | crans | | ~0~ | | | Ма | | 1 | | | | · | · | | | | | | | | | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | CO1 | 3 | 2 | - | - | - | - | _ | _ | - | - | - | 1 | - | - | | | | CO2 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO3 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO4 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO5 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | | | | | | | | | | | | | | | | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | CO1 | _ | in the parting p | • | | perties | and app | olication | ns of the | ermopla | astics, the | ermosetti | ings, elas | tomers a | nd | | |----------|------------------------|------|---------|---|----------|----------|----------|--------------------|-----------|------------|-----------|-------------|------------|--------------|------------|---------|--| | | | CO2 | | | | | ious ms | ateriale | and the | ir 11000 | in the co | onetructi | on of hat | teries an | d fuel cel | 1c | | | | | CO3 | | | | | | materi | | | | | on or bat | iciics air | u luci cei | 15. | | | | _ | CO4 | | | | | | | |
| | | molecula | ar machir | nes, need | l of | | | | str | CO4 | | chemis | • | o oi sup | iaiiioie | cuiai ci | CIIIISU | y iii tiie | аррпса | 1110113 01 | illolecula | ii iiiaciiii | 163, 11660 | 101 | | | 60 | Chemistry | CO5 | | | | s of spe | ectrome | etry suc | h as UV | / IR an | d NMR | | | | | | | | 20BS1209 | S | | e April | со р | | | | 20. 7 00.0 | | ,, | <u> </u> | | | | | | | | | Applied | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | `` | ldd | CO1 | 2 | 2 | - | - | - | - | 3 | - | - | - | - | - | - | - | | | | Α . | CO2 | 2 | 2 | - | - | - | - | 2 | - | - | - | - | - | - | - | | | | | CO3 | 2 | 2 | - | - | - | - | 2 | - | - | - | - | - | - | - | | | | | CO4 | 2 | 2 | - | - | - | - | 3 | - | - | - | - | - | - | - | | | | | CO5 | 2 | 2 | - | - | - | - | 3 | - | - | - | - | - | - | - | | | | | CO1 | Able | ble to understand the concepts of electrical circuits and verify theorems in DC circuits. ble to analyse different concepts of single phase AC circuits ble to explain the working and applications of DC machines. | | | | | | | | | | | | | | | | | CO2 | | | | | | | | | | | | | | | | | | ing | CO3 | | 1 0 1 | | | | | | | | | | | | | | | | eer | CO4 | | | | | | | | | | | | | | | | | - | Electrical Engineering | CO5 | : Able | | | | | | | | | | | | | | | | 20ES1204 | En | | T | 1 | | ı | ı | ı | 1 | 1 | 1 | ı | ı | | Т | | | | ES1 | ical | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | 20 | ectr | CO1 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | Ele | CO2 | 3 | 2 | - | - | - | - | - | - | - | - | - | - | - | - | | | | Basic | CO3 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | B | CO4 | 3 | | - | - | - | - | - | - | - | - | - | 1 | _ | - | | | | | CO3 | 3 | 2 | | _ | _ | _ | _ | | | _ | _ | 1 | | _ | | | | | CO1 | _ | | algehr | a and e | noineer | ing tool | s like r | nesh an | d node | methods: | o solve v | | C circui | | | | | | COI | | ems {A | | | | ing tool | S IIKC I | nesii an | d Hode | memous | to solve | various L | oc cheur | | | | | | CO2 | | | | | | | | | | niques, s | kills to s | olve the | AC circu | it | | | | | | | | | | | ions. { A | | | | | | | 1.50 | 1 | | | | | CO3 | | | | | | chnıque
erstand | | | s and th | neorems | to analyz | ze the bot | th DC an | d AC | | | | | | Circui | t proble | enis en | ectivery | . { Ond | erstand | ievei, r | XL2} | | | | | | | | | | | CO4 | Learn | s and g | ain the | knowle | dge on | charact | eristics | of two | port net | work na | rameters | (Z. Y. A | BCD, h | & g) | | | 05 | | 00 . | | | | | | | | | | lerstand 1 | | | 202,11 | 50 8) | | | 312 | NA | CO5 | Analy | ze the | DC tran | sients i | n RL, F | RC and | RLC ci | rcuits in | n detail | | | | eneous ar | nd non- | | | 20ES1205 | _ | | homo | geneou | s differ | ential e | quation | s.{ Ana | lyze le | vel, KL | 4} | | | | | | | | 7 | | | Т | 1 | | T | T | T | Г | 1 | 1 | T | T | T | T | | | | | | 0.0 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | | CO1 | 3 | 2 | - | - | - | - | - | - | - | - | - | - | - | | | | | | CO2 | 3 | 2 | - | - | - | - | - | - | - | - | - | - | - | | | | | | CO3 | 3 | 2 | - | - | - | - | - | - | - | - | - | - | - | | | | | | CO4 | 3 | 3 | - | - | - | - | - | - | - | - | - | - | - | - | | | | | CO5 | 2 | 3 | - | - | - | - | - | - | - | _ | - | - | - | | | | | <u> </u> | | | 1 | | | | | | 1 | 1 | | | | | | | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | 1 | | Ι | | | | | | | | | | | - | | | |---------------------|--|---|--|---|--|--|----------------------------
--|-----------------------------------|--------------------------------------|---------------------|----------------------------|----------------|---------------------------|-----------------------|------------------| | | | CO1 | | | | | | | | | | | epts like | e data typ | es, cont | amers. | | | ڃ | CO2 | Solve | coding | tasks i | related | to cond | litions, | loops a | and Stri | ing pro | cessing | | | | | | | /tho | CO3 | | | | | | | | | | | to build | modules | and pac | kages | | | Programming for Problem Solving using Python | | | al softw | | | and Still | | | r-0.00 | | | | | and put | | | | usir | CO4 | 1 | ement F | | | t onice t | ad mair | oinles | n Dr.41- | 00 | | | | | | | ဟ | ving | CO4 | | | | | | | cipies | n Pyth | OII. | | | | | | | 20ES1206 | Sol | CO5 | Identi | fy solu | tions us | sing G | \cup I in P | ython | | | | | | | | | | S1 | lem | | | | | | | | | | | | | | | | | 8 | Prok | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | 7 | for | CO1 | 1 | 2 | 2 | 1 | _ | _ | _ | _ | _ | _ | _ | | _ | _ | | | ning | CO2 | 1 | 2 | 2 | 1 | _ | _ | _ | | | _ | _ | | | | | | amu | | | | | | | | | - | - | | | | - | - | | | rogr | CO3 | 1 | 3 | 3 | 2 | 1 | - | - | - | - | - | - | | - | - | | | ٩ | CO4 | 1 | 2 | 2 | 2 | - | - | - | - | - | - | - | | - | - | | | | CO5 | 1 | 2 | 2 | 2 | 1 | - | - | - | - | - | - | | - | 1 | | | þ | CO1 | To est | timate t | he amo | unt of 1 | netal io | ns prese | ent in d | ifferent | solutio | ns (L4 & | L3 | • | • | • | | | 'La | CO2 | | alyze th | | | | | | | | | | | | | | 0 | Applied Chemistry Lab | CO3 | | | | • • | | | | W Licino | diffor | nt inctru | mentati | on techn | iauas /I 2 | 1 | | 21 | ij | CO3 | | | | | | | | | | | | | | | | 20BS1210L | Che | _ | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | eq | CO1 | - | 3 | 2 | - | - | - | - | 1 | 2 | - | - | 2 | - | - | | ,,, | ildo | CO2 | - | 2 | 3 | - | - | - | - | 1 | 3 | - | - | 1 | - | - | | | Ą | CO3 | - | 1 | 2 | - | - | - | - | 1 | 2 | - | - | 1 | - | - | | | | CO1 | Able | to analy | ze a giv | ven net | work by | applyi | ng elec | trical la | ws and | network | theorem | ns | 1 | ı | | | | CO2 | | | | | | | | | | itations. | 111001011 | 15. | | | | | Q | | | o analy | | _ | | | | | | | | | | | | | La | CO3 | | | | eriorii | iance ci | iaracte | ristics c | ווו טע וו | acrimes |) | | | | | | | | | | | | | | | | | | C 4 | | • | | | | | ing | CO4 | | | | | | • | | | | of 1-phas | se Transf | ormer | | | | | ering | CO5 | | o meas
o analy | | | | • | | | | • | se Transf | ormer | | | | 7. | ineering | | | | | | | • | | | | • | se Transf | ormer | | | | .207L | :ngineering | | | | | | | • | | | | • | PO11 | PO12 | PSO1 | PSO2 | | ES1207L | al Engineering | CO5 | Able t | o analy | se the p | erform | nance cl | naracte | ristics c | of AC m | achines | | | PO12 | PSO1 | PSO2 | | 20ES1207L | rical Engineering | CO5 | PO1 | PO2 | se the p | PO4 | PO5 | PO6 | ristics c | of AC m | achines | PO10 | PO11 | | PSO1 | | | 20ES1207L | ectrical Engineering | CO5
CO1
CO2 | PO1 3 3 | PO2
2 | PO3 | PO4
- | PO5 | PO6 | PO7 | of AC m | achines | PO10
- | PO11
-
- | PO12
1 | - | | | 20ES1207L | Electrical Engineering Lab | CO5 CO1 CO2 CO3 | PO1 3 3 3 | PO2
2
2 | PO3 | PO4 | PO5 | PO6
-
- | PO7 | of AC m | PO9 | PO10 | PO11
-
- | PO12
1 | - | | | 20ES1207L | isic Electrical Engineering | CO5 CO1 CO2 CO3 CO4 | PO1 3 3 3 3 3 | PO2
2 | PO3 | PO4
- | PO5 | PO6 | PO7 | of AC m | PO9 | PO10
- | PO11
-
- | PO12 1 - 1 - | - | | | 20ES1207L | Basic Electrical Engineering | CO5 CO1 CO2 CO3 | PO1 3 3 3 | PO2
2
2 | PO3 | PO4 | PO5 | PO6
-
- | PO7 | of AC m | PO9 | PO10 | PO11
-
- | PO12
1 | - | | | 20ES1207L | Basic Electrical Engineering | CO5 CO1 CO2 CO3 CO4 | PO1 3 3 3 3 3 | PO2
2
2 | PO3 | PO4 | PO5 | PO6
-
- | PO7 | of AC m | PO9 | PO10 | PO11
-
- | PO12 1 - 1 - | - | | | 20ES1207L | Basic Electrical Engineering | CO5 CO1 CO2 CO3 CO4 CO5 | PO1 3 3 3 3 3 3 3 | PO2 2 2 - 2 - | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11
-
- | PO12 1 - 1 - | - | | | 20ES1207L | Basic Electrical Engineering | CO5 CO1 CO2 CO3 CO4 | PO1 3 3 3 3 Comp | PO2 2 2 - 2 - 2 orehend | PO3 how se | PO4 | PO5 | PO6 to buil | PO7 d right | PO8 out of | PO9 | PO10 | PO11 | PO12 1 - 1 - 1 | | | | 20ES1207L | Basic Electrical Engineering | CO5 CO1 CO2 CO3 CO4 CO5 | PO1 3 3 3 3 Comp | PO2 2 2 - 2 - 2 orehend | PO3 how se | PO4 | PO5 | PO6 to buil | PO7 d right | PO8 out of | PO9 | PO10 | PO11 | PO12 1 - 1 - | | | | 20ES1207L | Basic Electrical Engineering | CO5 CO1 CO2 CO3 CO4 CO5 | PO1 3 3 3 3 3 Comp | PO2 2 2 - 2 - 2 - prehend | PO3 s the uses | PO4 oftware | PO5 | PO6 to buil | PO7 d right | PO8 out of | PO9 | PO10 | PO11 | PO12 1 - 1 - 1 | | | | 20ES1207L | Basic Electrical Engineering | CO5 CO1 CO2 CO3 CO4 CO5 CO1 CO2 | PO1 3 3 3 3 Comp | PO2 2 2 - 2 - corehendonstrateding local | PO3 s the us | PO4 oftware se of ar condit | PO5 e easily interprionals | PO6 to buildreted la | PO7 d right | PO8 out of | PO9 the box | PO10 solving t | PO11 | PO12 1 - 1 - 1 | | | | | Basic | CO5 CO1 CO2 CO3 CO4 CO5 CO1 CO2 CO3 | PO1 3 3 3 3 3 Comp | PO2 2 2 - 2 - 2 - corehend constrate ding locations with | PO3 | PO4 oftware se of ar condit | PO5 e easily interprionals | PO6 to buildereted la | PO7 d right nguage | PO8 out of e for pr | PO9 | PO10 solving t | PO11 hrough | PO12 1 - 1 - 1 control s | -
-
-
-
- | -
-
-
- | | | Basic | CO5 CO1 CO2 CO3 CO4 CO5 CO1 CO2 | PO1 3 3 3 3 3 Comp Demo | PO2 2 2 - 2 - 2 - orehend onstrate ding loc ice with | PO3 | PO4 oftware se of ar condit | PO5 e easily interprionals | PO6 to buildereted la | PO7 d right nguage | PO8 out of e for pr | PO9 | PO10 solving t | PO11 hrough | PO12 1 - 1 - 1 | -
-
-
-
- | -
-
-
- | | | Basic | CO5 CO1 CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 | PO1 3 3 3 3 3 Comp Demo | PO2 2 2 - 2 - orehend onstrate ding locationstrate les | PO3 s the us | PO4 conditeructure | PO5 | PO6 to build reted la uick proor real | PO7 d right nguage | PO8 out of e for pr | PO9 the box oblem : | PO10 solving t | PO11 hrough | PO12 1 - 1 - 1 control s | -
-
-
-
- | -
-
-
- | | | Basic | CO5 CO1 CO2 CO3 CO4 CO5 CO1 CO2 CO3 | PO1 3 3 3 3 3 Comp Demo | PO2 2 2 - 2 - 2 - orehend onstrate ding loc ice with | PO3 s the us | PO4 conditionary conditi | PO5 | PO6 to build reted la uick proor real | PO7 d right nguage | PO8 out of e for pr | PO9 the box oblem : | PO10 solving t | PO11 hrough | PO12 1 - 1 - 1 control s | -
-
-
-
- | -
-
-
- | | 20ES1208L 20ES1207L | Python Lab Basic Electrical Engineering | CO5 CO1 CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 | PO1 3 3 3 3 3 Comp Demo include Practi Demo modu Comp | PO2 2 2 - 2 - 2 - crehend constrate ding location with constrate les crehend | PO3 | PO4 | PO5 | PO6 to build reted la uick pror real in the control of c | PO7 d right nguage ogrami needs b | PO8 out of e for pr ming sc by breal | PO9 | PO10 solving t | PO11 hrough | PO12 1 - 1 - 1 control si | tatement | | | | Basic | CO5 CO1 CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO5 | PO1 3 3 3 3 3 Comp Demo | PO2 2 2 - 2 - orehend onstrate ding locationstrate les | PO3 s the us | PO4 conditionary conditi | PO5 | PO6 to build reted la uick proor real | PO7 d right nguage | PO8 out of e for pr | PO9 | PO10 solving t | PO11 hrough | PO12 1 - 1 - 1 control s | -
-
-
-
- | -
-
-
- | | | Basic | CO5 CO1 CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 | PO1 3 3 3 3 3 Comp Demo include Practi Demo modu Comp | PO2 2 2 - 2 - 2 - crehend constrate ding location with constrate les crehend | PO3 | PO4 | PO5 | PO6 to build reted la uick pror real in the control of c | PO7 d right nguage ogrami needs b | PO8 out of e for pr ming sc by breal | PO9 | PO10 solving t | PO11 hrough | PO12 1 - 1 - 1
control si | tatement | | | | Basic | CO5 CO1 CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO5 | PO1 3 3 3 3 3 Comp Demo include Practi Demo modu Comp | PO2 2 2 - 2 - 2 - crehend constrate ding location with constrate les crehend | PO3 | PO4 | PO5 | PO6 to build reted la uick pror real in the control of c | PO7 d right nguage ogrami needs b | PO8 out of e for pr ming sc by breal | PO9 | PO10 solving t | PO11 hrough | PO12 1 - 1 - 1 control si | tatement | | | | Basic | CO5 CO1 CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO5 CO1 | PO1 3 3 3 3 3 Composition of the | PO2 2 2 2 - 2 - 2 - 2 - brehend constrate ding loc ice with constrate les brehend PO2 - | PO3 the software post and a data stars sta | PO4 | PO5 | PO6 | PO7 d right nguage ogramn needs t | PO8 out of e for pr ming sc by breal | PO9 | PO10 solving t t code in | PO11 hrough of | PO12 1 - 1 - 1 control si | tatement | | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | | | l . | | | T _ | | | | | red Departin | redicts. | | | 1 | |----------|------------------|-----|---------------|----------|------------------|----------------------|---------------------|--------------------|-----------------|-----------------|----------|--------------|------------|---------------|------------|--------| | | | CO4 | 2 | 1 | 2 | 2 | 2 | - | - | - | 3 | 2 | - | - | - | - | | | | CO5 | - | 3 | 3 | 2 | 3 | - | - | - | 3 | 2 | - | - | - | - | | | | CO1 | demo | cratic I | ndia. | | | | | | | and its in | | | | | | | | CO2 | Under | rstand t | he fund | ctioning | g of thre | ee wing | s of the | e gover | nment | ie., exec | utive, leg | gislative | and judi | ciary. | | | _ | CO3 | Under | rstand t | he valu | e of the | e funda | mental | rights | and du | ties for | becomir | ng good | citizen o | f India. | | | | ion | CO4 | | | | | | | | | | nd local | | | | | | 20MC1201 | Constitution | CO5 | Apply
Comn | the kn | owledg
and Ul | ge in str
PSC for | rengthe
r sustai | ning of
ning de | the co
mocra | nstituti
cy. | onal in | stitutions | s like CA | AG, Elec | tion | | | ĭ | Co | | | | | | | | | | | | | | | | | 20 | an | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | Indian | CO1 | - | - | _ | _ | _ | - | • | - | | _ | - | 1 | - | - | | | _ | CO2 | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO3 | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO4 | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO5 | - | - | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | ı | <u>I</u> | I. | I. | I. | <u> </u> | <u>I</u> | | I. | 1 | ı | ı | 1 | 1 | ı | | | | | | | | | | | II-I | | | | | | | | | | | CO1 | Devel | op the i | use of n | natrix a | lgebra t | techniqu | ies that | is need | led by e | ngineers | for prace | tical app | lications | (L6) | | | | CO2 | | | | | | | | | | on, Gaus | | | | | | | | CO3 | | | | | | | | | | | | | ence (L5) | | | | = | CO4 | | | | | | | | | | g vector o | | | (-0) | | | 7 | S-I | CO5 | | | | | | | | | | at mode | | | ses (L3) | | | 11; | ıtic | | | , | | | · • · Þ | 3.3.1 0 | . 5. 5.11 | Jyu | | | r, 5.00 | 12. 2 3 2 3 2 | () | | | 20BS2112 | Mathematics –III | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | 7 | latl | CO1 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | Σ | CO2 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO3 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO4 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO5 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO1 | | | | | | | | | | ons (Unde | erstand le | evel) | | | | | | CO2 | Demo | nstrate | the usa | ge of di | iodes in | variou | s applic | ations | (Apply | level) | | | | | | | | CO3 | Explai | n the w | orking | princip | les of B. | JTs and | FETs (L | Indersta | and lev | el) | | | | | | | | CO4 | Learn | the art | of bias | ing of B | JTs and | FETs (A | pply le | vel) | | | | | | | | 10 | | CO5 | | the equ | uivalen | t small : | signal lo | ow freq | uency r | nodels | of BJTs | and FETS | in ampl | ifier ana | lysis (An | alyze | | 20PC2101 | EDC | | level) | T | T | ı | 1 | T | 1 | T | 1 | I | I | 1 | 1 | 1 | | OPC | E | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | 7 | | CO1 | - | 3 | - | - | - | - | - | - | - | - | - | - | - | 2 | | | | CO2 | 2 | 2 | - | - | - | - | - | - | - | - | - | - | - | 2 | | | | CO3 | - | 3 | - | - | - | - | - | - | - | - | - | - | - | 3 | | | | CO4 | - | 3 | _ | - | | - | - | - | - | - | - | - | | 2 | | | | CO5 | 2 | - | - | - | - | - | - | - | - | - | - | - | | 2 | | 0 | | CO1 | The st | tudent v | will be a | able to | underst | and var | ious typ | es of si | gnals n | nathemat | ically an | d able to | calculate | • | | 21 | S&S | | comp | lex Fou | rier spe | ectrum. | (Under | stand, (| Calculat | e) | | | | | | | | 20PC210 | S | CO2 | | | | | | | | | | | | | and App | | | Ñ | | | sampl | ing the | orem to | conve | t contir | nuous-ti | me sigi | als to c | liscrete | -time sig | nal and r | econstru | ct the ori | ginal | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | | oi 1 | fno | 0 mars 1 a - | (A 1_ | ra A | n1) | | | | | | | | | |----------|-----------------------------------|------------|--------|---------|--------------|------------|-----------|-----------|-----------|--------------|----------|-------------------|--------------|--------------|-----------|-----------| | | | CO3 | | | _ | | se, App | | and dat | ormino | tho roo | noncoo | f I TI cyct | om Und | erstand t | ho | | | | COS | | - | | | | | | | | - | - | | member | | | | | | | stand) | olution | , correi | מנוטוו, פ | nergy s | респа | uensit | y and p | ower spe | ctrar der | isity. (Re | member | , | | | | CO4 | Comp | ute Lap | lace tra | nsform | is to an | alyze co | ntinuo | us time | signals | and syst | ems and | underst | and the | | | | | | | | _ | | _ | (Comp | - | | | | | | | | | | | CO5 | | | | | | | time sig | gnals an | d syste | ms, and | understa | nd the c | oncept of | f | | | | | | | | | mpute) | | | | | 2010 | | | | | | | | 604 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | CO1 | 3 | 3 | 2 | - | - | - | - | - | - | - | - | - | - | 3 | | | | CO2
CO3 | 3 | 3 | 3 | - | - | - | - | - | - | - | - | - | - | 3 | | | | CO3 | 3 | 2 | 2 | - | - | - | _ | - | - | - | - | _ | - | 3 | | | | CO5 | 3 | 2 | 2 | _ | _ | _ | _ | _ | _ | _ | _ | - | _ | 3 | | | | CO1 | - | | | og and | digital s | eveteme | | nositio | nal nota | | | | mputer c | | | | | 601 | | _ | | _ | _ | rstand, | | • | nai nou | ttions, no | illioer sy. | stems, ec | inputer c | oues III | | | ign | CO2 | | | | | | | | | design | logic circ | cuits. (Ur | nderstand | l, Apply, | | | | Digital Circuits and Logic Design | | Analy | ze and | valuate |) | | | • | • | | | • | | | | | | gic I | CO3 | | | | | _ | | _ | | | | | s using e | ncoders, | | |)3 | Log | | | | | | | _ | | | | uate, and | | | | | | 20PC2103 | nd | CO4 | | | | | | | | | | lerstand, | Apply, A | nalyze) | | | | ЭРС | ts a | CO5 | · | | | | | uits. (Ap | | | | | I | T = | l | T | | 7(| cui | 604 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | Cil | CO1 | 3 | 2 | 2 | - | - | - | - | - | - | 1 | - | - | - | 3 | | | gita | CO2
CO3 | 3 | 2 | 2 | - | - | _ | - | - | - | 1 | - | - | - | 3 | | | Dig | CO3 | 3 | 2 | 2 | - | - | - | - | - | - | 1 | - | - | - | 3 | | | | CO5 | 3 | 2 | 2 | _ | _ | _ | _ | _ | _ | 1 | - | - | _ | 3 | | | | CO1 | - | _ | _ | lel the r | andom | nhenon | nena ar | d solve | simple | _ | istic pro | hlems (I | nderstan | | | | | 601 | Apply | | ily illoc | ici tiic i | andom | phenon | iiciia ai | iu 501 v C | simple | probabli | iistic pro | oiciis.(C | nacistan | u, | | | | CO2 | | | rent typ | oes of ra | andom | variable | es and c | ompute | statisti | cal avera | iges of th | ese rand | om | | | | | | variab | les.(Ar | alyse, | Apply, | Compu | te) | | • | | | | | | | | | | CO3 | Learn | how to | deal w | ith mul | tiple ra | ndom v | ariable | s, condi | tional p | robabilit | y and co | nditiona | l expecta | tion, | | _ | | | , , | | | | | | | | | Analyse, <i>i</i> | <u> </u> | | | | | 113 | ے | CO4 | | | | | | | | | | | | Jndersta | | | | 20BS2113 | RVSP | CO5 | | | | | | | | to Cons | truct a | nd analys | se the ma | athemati | cal mode | elling of | | 20 | _ | | | | | | | oly, Con | | DOG | DOO | DO10 | DO11 | DO12 | DCO1 | DCO2 | | | | CO1 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | CO2 | 3 | 2 | 3 | - | | | | - | - | 1 | _ | - | _ | 3 | | | | CO3 | 3 | 2 | 3 | _ | - | _ | _ | _ | _ | 1 | _ | _ | _ | 3 | | | | CO4 | 3 | 2 | 2 | - | - | - | - | _ | - | 1 | - | - | - | 3 | | | | CO5 | 3 | 2 | 2 | - | - | - | - | - | - | 1 | - | - | - | 3 | | |] | | 1 - 1 | | <u> </u> | <u>I</u> | L | <u>I</u> | <u>I</u> | 1 | L | ı | 1 | 1 | 1 | | | C | | CO1 | Under | stand p | hilosop | hy of I | ndian c | ulture a | nd civi | ization | | | | | | | | 20MC | EITK | CO2 | Distin | guish t | he India | an langi | iages ai | nd litera | iture an | nong di | fference | e traditio | ns. | | | | | 2(| ш | CO3 | Learn | the phi | losoph | y of and | cient, m | edieval | and mo | odern Ir | ndia | | | | | | | | _ | _ | _ | | | | | _ | | _ | _ | | | | | | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | CO4 | Acqu | <u>ire t</u> he i | nforma | tion abo | out the | fine arts | in Indi | ia | | | | | | | |-----------|-------------------------------------|-----|-------|-------------------|-----------|-----------|----------------------|-----------|-----------|-----------|-----------|------------|------------|------------|------------|---------| | | | CO5 | To kn | ow
the | contrib | oution o | f scient | ists of o | differen | t eras. | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | CO1 | - | - | - | - | - | - | 2 | 2 | 2 | - | - | - | - | - | | | | CO2 | - | - | - | - | - | - | 1 | 2 | - | - | - | - | - | - | | | | CO3 | - | - | - | - | - | - | 2 | 1 | - | - | - | - | - | - | | | | CO4 | - | - | - | - | - | - | 3 | 3 | 3 | - | - | - | - | - | | | | CO5 | - | - | - | - | - | - | 3 | 3 | 3 | - | - | - | - | - | CO1 | Mea | sure vo | oltage, | freque | ncy an | d phase | of any | y wave | form u | sing CR | O.(Und | erstand |) | | | | | CO2 | | | | | | | wavef | orms v | with re | quired f | requenc | y and a | mplitude | • | | | | | | ng func | | | | | | | | | | | | | | | ab | CO3 | Ana | lyze th | e chara | acterist | ics of | differe | nt elec | tronic | device | s such a | s diodes | s, transis | stors | | | | ts La | | etc. | (Apply | 7) | | | | | | | | | | | | | | ircui | CO4 | App | ly the | diode | workir | ig prin | ciples | to des | ign sin | nple ci | rcuits li | ke recti | fiers, po | ower | | | 14 | d Ci | | supp | olies an | d ampl | lifiers e | etc. (A _] | pply) | | | | | | | | | | 20PC2104L | Electronic Devices and Circuits Lab | CO5 | Desi | ign the | BJT a | mplifie | r circu | it for th | ne give | n opera | ating co | ondition | s and sp | ecificati | ons. | | | PC | vice | | (Ap | ply) | | | | | | | | | | | | | | 70 | De | | | | | | | | | | | | | | | | | | onic | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | ectr | CO1 | 3 | 2 | | | | | | | | | | | | 2 | | | Ш | CO2 | 3 | 2 | | | | | | | | | | | | 2 | | | | CO3 | 3 | 2 | | | | | | | | | | | | 2 | | | | CO4 | 3 | 3 | | | | | | | | | | | | 3 | | | | CO5 | 3 | 3 | | | | | | | | | | | | 2 | CO1 | Creat | e and ev | valuate | signals | using N | MATLA | B | | | | | | | | | | | CO2 | | | | | | formati | | | | | | | | | | | | CO3 | | | | | | designs | | | Transf | orms | | | | | | | | CO4 | | | | | | g and sy | | | | | | | | | | .05L | q | CO5 | Apply | y convo | lution a | nd filte | ring tec | hnique | s profic | iently | | | | | | | | 20PC21 | SS Lak | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | 0P(| SS | CO1 | 3 | - | - | - | 3 | - | - | - | - | 2 | - | - | 3 | 2 | | 7 | | CO2 | 3 | _ | _ | 2 | - | _ | 1 | _ | - | - | _ | _ | 3 | 1 | | | | CO3 | 3 | - | 2 | - | - | _ | - | - | - | - | 1 | - | 3 | 2 | | | | CO4 | 3 | - | _ | 2 | - | _ | - | - | - | - | - | 2 | 3 | 1 | | | | CO5 | 3 | - | 2 | 2 | - | _ | - | - | - | - | - | - | 2 | 2 | | | | 1 | I. | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | CO1 | Unde | rstand | digital | logic pi | inciple | s and lo | gic gat | e operat | tions, va | alidate th | rough ex | periment | ts. | | | 9 | q | CO2 | | | | | | | | | | | | | using a I | Digital | | 10 | La | | | er Kit. | | υ | | | , | | | 1 | , | , | C | υ | | 20PC2106L | DCLD Lab | CO3 | Analy | y ze and | verify | decode | r and de | e-multip | lexer c | ircuits, | showca | sing pro | ficiency | and appli | cations. | | | 201 | ۵ | CO4 | Desig | n seque | ential lo | gic circ | uits, in | cluding | various | s flip-fl | ops, and | d work w | ith seque | ential dig | ital syste | ms. | | | | CO5 | Const | ruct an | d analyz | ze coun | ters and | d other o | digital c | circuits, | highlig | thting pra | actical ap | plication | s in digit | al | | | | • | • | | - | | | | | | | | | | | | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | | electr | onics | | | | | er a rought a rought | 200000000000000000000000000000000000000 | | | CE 11-70 | | | | |----------|-----------------|-----|----------|------------------|---|----------|----------|-----------|----------------------|---|-----------|------------|------------|-------------|------------|---------| | | | | 1 010011 | J111 - D. | | | | | | | | | | | | | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | CO1 | 3 | 2 | - | - | 3 | - | - | - | - | - | - | 2 | 3 | 1 | | | | CO2 | 3 | - | 3 | - | 3 | - | - | - | - | - | 2 | | 3 | 2 | | | | CO3 | 3 | 3 | 2 | - | - | - | 1 | - | _ | - | - | - | 2 | 2 | | | | CO4 | 3 | - | 3 | - | 3 | - | - | - | 2 | - | - | - | 3 | 2 | | | | CO5 | 3 | 3 | 3 | - | - | - | 1 | - | - | - | - | - | 3 | 2 | | | | I. | L | 1 | | | | | I | | | l | I. | l | l | | | | | CO1 | Dome | netroto | V novel | odgo of | Duthor | Funda | montolo | | | | | | | | | | | CO2 | | | | | | | | | rocoss | lorgo dot | acote in | oludina n | erformin | a orrow | | | | CO2 | | | | | | haping (| | | DIOCESS | iai ge uai | ascis, iii | riuumg p | | gairay | | | | CO3 | | | | | | | | | lection | aggrega | tion me | raina an | d data cle | eaning | | | | 603 | | al-world | | | periori | II tasks | sucii as | uata se | icction, | aggrega | tion, mei | iging, an | u uata Cit | annig | | | | CO4 | | | | | and de | sion so | ftware | solution | s usino | OOP pri | inciples | | | | | | | CO5 | | | | | | | | | | using Pyt | | rammin | σ. | | | 20SC2101 | Д. | | 1 11101) | 20 proc | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | -8011011 | , | p.1011 | | | <i></i> | 21011 1102 | <u>,- w</u> | <u>5.</u> | | | SC2 | DPVP | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | 200 | _ | CO1 | 3 | - | 2 | - | | - | - | - | _ | - | - | - | 2 | 2 | | | | CO2 | 2 | _ | 2 | _ | 2 | _ | _ | _ | _ | - | - | _ | 2 | 2 | | | | CO3 | 2 | _ | 2 | _ | 2 | _ | _ | _ | _ | - | - | - | 2 | 2 | | | | CO4 | 2 | 3 | 2 | _ | 2 | _ | _ | _ | _ | - | - | _ | 2 | 2 | | | | CO5 | | | | _ | | _ | _ | _ | _ | - | - | _ | | | | | | | 2 | 3 | 3 | | 3 | | | | | | | | 2 | 2 | - | | | | | | | | | | | | Anals | ze the | RC circ | uits for | low na | | | s filter | ing and | design c | linners a | nd clamr | pers for v | arious | | | | | | cations(| | | low pa | ss and i | ngn pa | 35 THECT | ing and | design e | пррего а | na cianq | ocision v | arrous | | | | CO1 | аррис | (| | -, | | | | | | | | | | | | | | CO2 | Apply | v and A | nalvze | various | amplifi | ier circi | iits usir | o BIT | and MC | SFET at | high fre | equencies | and mul | tistage | | | | 552 | | fiers.(A | • | | • | | 6511 | -0 -01 | | | | -10.0100 | | | | | | CO3 | | | | | | k in amı | olifiers | and ana | alysis of | differen | t types o | f feedba | ck | | | | | | | fiers.(Fa | | | | | | | • | | | | | | | | Ŋ | CO4 | | • | | | • | of oscil | lator ci | rcuits.(| Analyze | <u>:)</u> | | | | | | 7 | Analog Circuits | CO5 | Unde | rstand o | differen | t types | of pow | er amp | lifiers a | nd perf | orm an | alysis of | single tu | ned | | | | 20PC2207 | Circ | | circuit | ts.(Und | erstand | , Analy | ze) | | | | | | | | | | | PC | og | | | • | | | | | | | | | | | | | | 20 | nal | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | A | CO1 | 2 | 3 | - | - | - | - | - | - | - | - | - | - | 2 | 2 | | | | CO2 | 2 | 3 | 2 | - | - | - | - | - | - | - | - | - | 2 | 2 | | | | CO3 | 2 | 3 | 3 | - | - | - | - | - | - | - | - | - | 2 | 3 | | | | CO4 | 2 | 2 | - | - | - | - | - | - | - | - | - | - | 2 | 3 | | | | CO5 | 1 | 2 | - | - | - | - | - | - | - | - | | - | 2 | 2 | 1 | | I | | 1 | | | | | | | | 1 | | | | | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | | | | | | | 1 | | | | red Departin | | | | | |----------|----------------------------------|-----|--------|----------|-------------|-----------|-----------|-----------|----------|-----------|------------|--------------|--------------|------------|---------------------------------------|--------| | | | CO1 | Use tl | he conc | epts of | vectors | and sp | ace coo | rdinate | s to solv | ve the fi | undamen | tal probl | ems of st | atic elect | tric | | | les | | fields | | | | | | | | | | | | | | | | (a) | CO2 | Apply | v princi | nles of | static el | lectric f | ield to 1 | ındersta | and the | hehavio | our of die | electrics | and cond | uctors | | | | > | | | | | | | | | | o cha vic | our or une | - Icetifes (| una coma | actors | | | | Pu | CO3 | | | | | | y magn | | | | | | | | | | | Electromagnetic Fields and Waves | CO4 | Solve | the Ma | xwell's | equation | ons of T | ime Va | ying fie | elds and | d obtain | the wav | re pheno | menon i | n various | media. | | 20PC2208 | 9 | CO5 | Analy | ze wave | propa | gation (| charact | eristics | and po | wer tra | nsporta | ition phe | nomeno | n. | | | | 5 | Fie | | | | | | | | | | • | • | | | | | | PC | . <u>:</u> | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | DO11 | DO12 | PSO1 | PSO2 | | 20 | Jet | | | | PU3 | PU4 | PU3 | PU6 | | PU6 | PU9 | PO10 | PO11 | PO12 | | ļ | | | lge
lge | CO1 | 3 | 2 | - | - | - | - | 2 | - | - | - | - | - | 3 | 2 | | | Ë | CO2 | 3 | 2 | - | - | - | - | 2 | - | - | - | - | - | 3 | 2 | | | 5 | CO3 | 3 | 2 | - | - | - | - | 2 | - | - | - | - | - | 3 | 2 | | | ec | CO4 | 3 | 2 | _ | _ | _ | _ | 2 | _ | _ | _ | _ | _ | 3 | 2 | | | ᇳ | | 3 | - | | | | | | | | | | | | | | | | CO5 | | 1 | | - | | <u> </u> | 2 | | | | <u> </u> | | 3 | 1 | | | ب | CO1 | | | | | | _ | | | | istics of | varıous d | ıgıtal log | ic famili | es. | | | 무 | CO2 | Study | ing bas | ics of H | IDL and | d Progr | amming | model | s of VI | HDL. | | | | | | | | Digital System Design with VHDL | CO3 | | mentin | | | | | | | | | | | | | | | ᇋ | CO4 | | | | | | ogic usi | ag ICc a | nd VUC |) codo | | | | | | | | 3 | | | | | | | | | | or code | | | | | | | 60 | gu | CO5 | Mode | ling of | Sequen | tial circ | uits usi | ng
ICs a | nd VHL |)L code | | | | | | | | 20PC2209 | esi | | | | | | | | | | | | | | | | | S | ٥ | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | 20 | eπ | CO1 | _ | 2 | _ | 3 | 2 | _ | _ | _ | _ | _ | _ | _ | _ | 3 | | | /st | CO2 | 2 | | | 3 | 3 | _ | | | | | | | 2 | | | | S | | | - | - | | | | | - | - | - | - | - | | - | | | ţa | CO3 | 2 | - | - | 3 | 3 | - | - | - | - | - | - | 2 | 2 | - | | | igi | CO4 | 3 | - | - | 3 | 3 | - | - | - | - | - | - | - | 3 | - | | | | CO5 | 3 | - | - | 3 | 3 | - | - | - | - | - | - | - | 3 | - | | | | CO1 | Imple | ement v | arious | peration | ons on 1 | inear lis | ts. | • | • | • | • | • | • | | | | | CO2 | | | | • | | | | uec for | evnlori | ing comm | lev data | structure | ic. | | | | | | | | | | | | | | | | | suuctuic | · · · · · · · · · · · · · · · · · · · | | | | | CO3 | · | | | | | | | | | structure | | | | | | | es | CO4 | | | | | | | | | | trees, bi | nary sea | rch trees | • | | | 1 | Structures | CO5 | Identi | fy appr | opriate | data st | ructure | algorit | hms fo | r graphs | S | | | | | | | OE2201 | 딜 | | | | | | | | | | | | | | | | |)E |)ţr | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | 200 | | CO1 | - | | | - | | | 107 | 1 00 | 103 | 1010 | 1011 | 1012 | | | | , , | Data | CO1 | 2 | 2 | 1 | | - | - | _ | | <u> </u> | _ | | - | 1 | 1 | | | | CO2 | 1 | 2 | 2 | - | - | - | - | - | - | - | - | - | 2 | 1 | | | | CO3 | 1 | | 2 | 2 | - | | _ | | | | | | 2 | 1 | | | | CO4 | 2 | - | 2 | 1 | - | - | - | - | - | - | - | - | 1 | 1 | | | | CO5 | _ | 2 | 1 | 2 | _ | _ | - | _ | _ | _ | _ | _ | 1 | 1 | | | 1 | CO1 | Under | | | | open 1 | on and | closed | 100n ar | etame : | nathama | tical ma | dels of m | echanica | | | | | COI | • | | • | | | | ct the ii | iatnema | mear mo | del of a s | system ar | nd Apply | | | | ۳s | | | | | | | verall s | | | | | | | | | | 6 | Ę. | CO2 | | | | | n analyz | zing the | system | respon | ise in tii | ne-doma | in, in ter | ms of va | rious | | | 52(|) sys | | | rmance | | | | | | | | | | | | | | 20ES2209 | Control Systems | CO3 | Analy | ze the s | ystem i | n term | s of abs | olute st | ability | and rela | ative sta | ability by | differen | t approa | ches. | · | | 20 | ıtı | CO4 | | | | | | | | | | | | | s of vario | us | | | Į | | | rmance | - | | anary | 6 | 2,500 | | | . 2442110 | , | | | | | | | 665 | | | | | £ • | | 1: | | A.1 | l · | l £ | ' | | | | | | CO5 | | | | | | | | | | | | | nain anal | | | 1 | 1 | | per gi | ven spe | ecification | ons. De | termine | e tne co | ntrollal | oility an | id obsei | rvability | of the co | ntrol sys | tem usin | g tne | | | • | | | | | | | | | | | | | | | | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | | conce | pts of s | tate vai | riable a | nalysis. | | | | | | | | | | |-----------------|-------------------------------------|---------------------------------|--|--|--|--|--|--
--|--|--|---|--|---|--|---------------------------------| | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | CO1 | 3 | 2 | - | - | - | - | - | - | - | - | - | - | - | - | | | • | CO2 | - | 2 | - | _ | - | - | _ | _ | - | - | _ | - | - | - | | | | CO3 | 3 | - | 3 | - | - | - | _ | _ | _ | - | _ | 2 | - | _ | | | | CO4 | - | - | - | _ | 2 | _ | _ | - | _ | - | - | - | - | - | | | • | CO5 | 3 | - | 3 | - | 2 | _ | _ | _ | _ | _ | _ | 2 | _ | _ | | | | CO1 | | n and | | he one | | of RC | Circuit | as dif | ferent i | ator and | integrat | | <u> </u> | | | | | CO2 | | | | | | per and | | | | ator una | megrae | 01. | | | | | | 002 | Office | istana | the ope | ration | or enp | per and | Clairi | ocis cii | cuits. | | | | | | | | ap | CO3 | Calcu | late the | e bandy | width a | of com | mon en | nitter. | commo | n sour | ce and ty | wo stage | e RC coi | ıpled an | nplifier | | _ | SL | CO4 | | n LC a | | | | | | | 11 50 41 | oc ana t | no stage | 7110 001 | aprou un | рине | | 211 | ij | CO5 | | | | | | ampli | fier wi | th and | withou | t feedba | ıck | | | | | 7 | ä | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | 20PC2211L | Analog Circuits Lab | CO1 | 2 | 2 | 3 | - | 3 | - | | | 3 | - | - | 2 | 3 | 2 | | , | nal | CO2 | 2 | 2 | 3 | | 3 | _ | _ | _ | 3 | _ | _ | 2 | 2 | 2 | | | Ā | CO3 | 2 | 2 | 3 | _ | 3 | _ | _ | | 3 | - | - | 2 | 3 | 3 | | | | CO4 | 2 | 2 | 3 | - | 3 | - | | _ | 3 | _ | _ | 2 | 2 | 2 | | | | CO5 | 2 | 2 | 3 | - | 3 | _ | _ | _ | 3 | _ | _ | 2 | 2 | 2 | | | | CO1 | | _ | | - | | are plat | forms | to the | | | - | | | | | | | | | | | | | | | | | .5 | | | | | | | | CO2 | | | | | | urpose | | | | 4 1 . | | | | | | | | CO3 | | | | | | | | | | ng tools | | 1 1 6 | | | | | | CO4 | | | | | | d digita | I senso | ors whi | ch are | basic bu | ilding b | locks for | r any | | | 2 | (C) | | | ctive s | | | | . D | 3D 1 | | | | | | | | | 2 | SO | CO5 | | miliari: | | | | pasic Po | | | | | 2011 | 2012 | 2004 | 5000 | | 7 | | | | 1 0111 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | SC2 | TEE(| | PO1 | FUZ | | | | | | | | | | | _ | | | 20SC2202 | онее(soc) | CO1 | PO1
2 | - | - | - | - | _ | - | - | 2 | 2 | _ | - | 3 | 3 | | 20SC2 | ОНЕЕ(| | 2 | - | - | - | - | _ | - | - | | | _ | - | | | | 20SC2 | ОНЕЕ(| CO2 | 2 | - | 2 | - | - | - | - | - | 2 | 2 | - | - | 3 | 3 | | 20SC2 | ОНЕЕ(| CO2
CO3 | 2
3
2 | - | 3 | - | - | - | - | - | 2 2 | 2 2 | - | - | 3 | 3 | | 20SC2 | ОНЕЕ(| CO2
CO3
CO4 | 2
3
2
2 | - | 3 | | - | - | - | | 2 2 2 | 2 2 2 | - | - | 3 3 3 | 3
3
3 | | 20SC2 | ОНЕЕ | CO2
CO3
CO4
CO5 | 2
3
2
2
2 | | 3
2
2 | - | | | - | -
-
- | 2
2
2
2 | 2
2
2
2 | -
-
- | -
-
- | 3
3
3 | 3
3
3
3 | | 20SC2 | | CO2
CO3
CO4 | 2
3
2
2
2
Under | -
-
-
-
-
rstand t | 3
2
2
he basic | -
-
es of HI | -
-
-
DL and | -
-
Apply | -
-
-
differer | -
-
-
nt progr | 2
2
2
2
ammin | 2
2
2
2
g approad | -
-
ches for o | -
-
-
obtaining | 3
3
3
3
digital I | 3
3
3
3
Logic | | 208C2 | | CO2
CO3
CO4
CO5 | 2 3 2 2 2 Under Gates | -
-
-
-
rstand the | 3
2
2
he basic | -
-
es of HI | -
-
-
DL and | -
-
Apply
 -
-
-
differer | -
-
-
nt progr | 2
2
2
2
ammin | 2
2
2
2
g approad | -
-
ches for o | -
-
-
obtaining | 3
3
3 | 3
3
3
3
Logic | | 208C2 | | CO2
CO3
CO4
CO5 | 2 2 2 2 Under Gates result | -
-
-
-
rstand to | 2
2
he basic
l adder | -
-
cs of HI
Perfor | -
-
-
DL and
rm simu | -
-
Apply lation a | -
-
differen | -
-
nt progr | 2
2
2
2
ammin | 2
2
2
2
g approac | -
-
ches for os and also | -
-
-
obtaining
o analyze | 3 3 3 3 digital I | 3 3 3 cogic hesis | | 208C2 | | CO2
CO3
CO4
CO5 | 2 2 2 2 Under Gates result Apply | -
-
-
-
rstand to
and ful | 3
2
2
he basic
ll adder | -
-
es of HI
, Perfor | -
-
DL and
rm simu | -
-
-
Apply a
lation a | -
-
differend veri | -
-
nt progr
fy the lo | 2
2
2
2
2
amming
ogical o | 2
2
2
2
g approace
perations | ches for os and also | -
-
-
obtaining
o analyze | 3
3
3
3
digital I | 3 3 3 cogic hesis | | | | CO2
CO3
CO4
CO5
CO1 | 2 2 2 Under Gates result Apply simula | -
-
-
-
rstand th
and ful
progra | 3 2 2 he basical adders | -
-
cs of HI
Perfor
approa | -
-
DL and
rm simu
ach usin
gical op | -
-
-
Apply
lation a | -
-
differenderind veri
L for design and a | -
-
nt progr
fy the lo
evelopi
lso anal | 2 2 2 ammingogical of | 2
2
2
2
g approace
perations
oder, ence | ches for os and also oder and s result. | -
-
-
obtaining
o analyze | 3 3 3 g digital I te the synt | 3 3 3 Cogic hesis | | | | CO2
CO3
CO4
CO5 | 2
2
2
2
Under
Gates
result
Apply
simula | -
-
-
-
rstand the
and full
progra
ation ar | 3
2
2
he basic
il adder,
imming
nd verif | -

es of HI
, Perfor
approay the lo | -
-
DL and
rm simu
ach usin
gical op
r higher | -
-
Apply
lation a | differend veri L for des and a | -
-
nt progr
fy the lo
evelopi
lso anal | 2 2 2 ammingogical of | 2
2
2
2
g approace
perations
oder, ence | ches for os and also oder and s result. | -
-
-
obtaining
o analyze | 3 3 3 3 digital I | 3 3 3 Cogic hesis | | | | CO2
CO3
CO4
CO5
CO1 | 2 2 2 Under Gates result Apply simula Write opera | -
-
-
-
rstand th
and ful
progra
ation ar
VHDL S | 3 2 he basical addersorming of verify source of also | es of HI
Perfor
approay
the lo | DL and am simulation of the system sy | - Apply alation a service of the ser | differend veri L for des and accomparesult. | -
-
nt progr
fy the lo
evelopi
lso anal | 2
2
2
2
amming
ogical of | 2
2
2
2
g approace
perations
oder, enco | ches for os and also oder and s result. | -
-
-
obtaining
o analyze
multiple
on and v | 3 3 3 g digital I te the synt | 3 3 3 Cogic hesis | | 20PC2202L 20SC2 | | CO2
CO3
CO4
CO5
CO1 | 2 2 2 Under Gates result Apply simula Write opera | | 3 2 2 he basical adderse ad verify source on also agramm | es of HI
Perfor
approa
y the lo
code for
analyze | DL and on simulation with using gical or higher the sylproach | - Apply alation and service of the sister | differer nd veri L for d s and a comparesult. | -
-
nt progr
fy the lo
evelopi
lso anal
rator an | 2
2
2
2
ammin
ogical o | 2
2
2
2
g approace
perations
oder, enco | ches for os and also oder and s result. simulation | -
-
-
obtaining
o analyze
multiple
on and v | 3 3 3 3 g digital I e the synt | 3 3 3 Cogic hesis | | | | CO2
CO3
CO4
CO5
CO1 | 2 2 2 Under Gates result Apply simula Write opera Use Visimula | | 3 2 he basical adders amming ad verify source of the dalso dals | es of HI perfor approay the lo code for analyze ning app | DL and ch usin gical op the synoroach gical op | Apply a lation lati | differend verind verind vering and a comparesult. | | 2 2 2 amming ogical of ogical of ogical of open decorptions of the decorp | 2 2 2 g approaches synthesis Perform | ches for os and also oder and s result. simulations is result. | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | 3 3 3 3 g digital I e the synt | 3 3 3 Cogic hesis orm logical | | | | CO2
CO3
CO4
CO5
CO1 | 2 2 2 Under Gates result Apply simula Write opera Use V simula Design | | 3 2 he basical adders amming ad verify fource of also a peramment verify ent Courter to the cour | es of HI
Perfor
approay
the locode for
analyzening apply the locode
nters a | DL and ch using gical oper the sylproach oper gical oper nd shift | Apply a lation lati | differend veri L for design and accompanies ac | -
-
nt progr
fy the lo
evelopi
lso ana
rator an
Flip Flo
lso ana
ters usi | 2 2 2 amming ogical of the last las | 2 2 2 2 g approace synthesis Perform e synthese L Source | ches for os and also oder and s result. simulations is result. | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | 3 3 3 3 digital I e the synteethe sy | 3 3 3 Cogic hesis orm logical | | | | CO2
CO3
CO4
CO5
CO1 | 2 2 2 Under Gates result Apply simula Write opera Use V simula Design | | 3 2 he basical adders amming ad verify fource of also a peramment verify ent Courter to the cour | es of HI
Perfor
approay
the locode for
analyzening apply the locode
nters a | DL and ch using gical oper the sylproach oper gical oper nd shift | Apply alation a service of the six si | differend veri L for design and accompanies ac | -
-
nt progr
fy the lo
evelopi
lso ana
rator an
Flip Flo
lso ana
ters usi | 2 2 2 amming ogical of the last las | 2 2 2 2 g approace synthesis Perform e synthese L Source | ches for os and also oder and s result. simulations is result. | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | 3 3 3 3 digital I e the synteethe sy | 3 3 3 Cogic hesis orm logical | | | Digital System Design with VHDL Lab | CO2
CO3
CO4
CO5
CO1 | 2 2 2 Under Gates result Apply simula Write opera Use V simula Design verify | | 3 2 he basical adderstand verify source of also orgrammed verify ent Coulcial open | - cs of HI Perfor approay the locode for analyze ning app the locotes analyze ning app | DL and on simulation with using gical operated by the sylphotoach operated by the shift of and allowed | Apply alation and service of the sister t | differend veri L for done so and a comparesult. eloping as and a cer countyze the | -
-
nt progr
fy the lo
evelopi
lso anal
rator an
Flip Flo
lso ana
ters usi
synthes | 2 2 2 ammingogical of the control | 2 2 2 2 g approace perations oder, encore synthesis Perform isters and experiments L Source lt. | ches for os and also oder and s result. simulation is result. code, Pe | | 3 3 3 g digital I e the syntexer, Performance the syntexer, Performance the syntexer is a syntexer in the syntexer. | 3 3 3 3 Cogic hesis orm logical | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | | | I | T | | | Market Control | reuneu an | | | | 12-11-20 | | | | |----------|--------------|-----|--------|--------------------|---------|-----------|-----------|----------------------|-----------|----------|------------|------------------------|------------|------------|------------|-----------| | | | CO3 | 1 | - | - | 3 | 3 | - | - | - | - | - | - | - | 3 | 3 | | | | CO4 | 1 | - | - | 3 | 3 | - | - | - | - | - | - | - | 3 | 3 | | | | CO5 | 1 | - | - | 3 | 3 | - | - | - | - | - | - | - | 3 | 3 | | | | | | | | | | | III-I | | | | | | | | | | | CO1 | | | | | | is of Di
d level, | | al Amp | olifier, a | nd perfo | rmance p | arameter | s of OP- | Amp | | | | CO2 | | | | | | | | ng on-a | mp. {A | pply lev | el. KL3} | | | | | | JS | CO3 | | | | | | | | | | | | lysis, KL4 | 1} | | | | Ē | CO4 | | | | | | | | | | | | nd level, | | | | 12 | ica | CO5 | | | | | | • | | | | | | evel, KL3 | | | | 20PC3112 | Applications | 003 | CONSC | . ruct tric | variou | is Digitt | ii to Aii | alog all | a Allaio | g to Dig | sitai coi | iverters. | (Apply II | cvci, KLS | <u>J•</u> | | | OP | 2 | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | 7 | Linear IC | CO1 | 3 | 2 | - | - | - | - | - | - | - | - | - | - | 2 | - | | | ine | CO2 | - | 3 | - | 2 | - | _ | _ | _ | - | _ | - | - | 2 | - | | | | CO3 | 2 | 3 | - | - | - | - | - | - | - | - | - | - | 3 | - | | | | CO4 | 2 | _ | _ | 3 | _ | _ | - | - | _ | - | - | _ | 3 | _ | | | | CO5 | 2 | _ | _ | 2 | _ | _ | _ | _ | _ | _ | _ | _ | 2 | _ | | | | | | | 1 | | | | | | | | | | | | | | | CO1 | | | | | | knowle
lationsl | | estima | ting the | Deman | d and de | mand el | asticity's | s for a | | | | CO2 | | Learner
nowleds | | | | | he natu | ire of d | lifferen | t markets | s and als | o to have | e | | | | | CO3 | The L | Learner | will ac | quire tl | he knov | vledge | on mar | ageme | nt, HR | M and M | Iarketing | ζ. | | | | 04 | | CO4 | | earner
gement | | quire tl | he knov | wledge | to prep | are Fin | ancial | Statemer | nts and th | he techni | iques of | project | | 20HS3104 | EEM | CO5 | The I | Learner | can ab | | | various
1 makin | | ment p | roject p | roposals | with the | e help of | capital | | | ,,, | | | _ | | | | | | | | | | | | | | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | CO1 | 1 | 1 | - | - | - | - | 1 | - | 1 | 1 | 2 | - | - | 1 | | | | CO2 | 1 | 2 | - | - | - | 1 | 1 | - | 1 | - | 2 | - | - | 1 | | | | CO3 | -
 - | - | - | - | 1 | 1 | 1 | 1 | 1 | 2 | - | - | 1 | | | | CO4 | 1 | 2 | - | 3 | - | - | 1 | - | 1 | 2 | 2 | - | - | 1 | | | | CO5 | 1 | 2 | - | 3 | - | - | 1 | 1 | 1 | 2 | 2 | - | - | 1 | | | | l | 1 | | 1 | | 1 | 1 | ı | ı | | l | | | | | | | | CO1 | | | | | | dulation | | emodul | ation sc | hemes ar | nd Under | stand var | rious fun | ctional | | κį | | CO2 | Distin | nguish v | various | Angle 1 | modula | | demod | | | es and C | ompare t | he perfo | rmance o | f AM, | | 20PC3113 | ADC | CO3 | Descr | ibe the | genera | tion an | d detec | | base ba | nd syst | em and | | ine the p | erforma | nce of lir | ie | | 20 | | CO4 | | | | | | | | | | | e (Evalua | ting) | | | | | | CO5 | | | | | | | | | _ | nes for to
alyzing) | he reliab | le transn | nission of | f digital | | 1 | | | • | | - | | | | | | - | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | 1 | | | | | | | | | | | 55-10-50 | | | | | |----------|--------------|--|------------------------|----------------------|----------|-----------|---------|----------|---------|---------|----------|-----------|------------|-----------|------------|--------|--| | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | | CO1 | 3 | 2 | 2 | - | - | - | 1 | - | - | - | - | - | - | - | | | | | CO2 | 3 | 2 | 1 | - | - | - | 1 | - | - | - | - | - | - | - | | | | | CO3 | 3 | 2 | 2 | - | - | - | 1 | - | - | - | - | - | - | - | | | | | CO4 | 3 | 2 | 2 | - | - | - | 1 | - | - | - | - | - | - | - | | | | | CO5 | 3 | 2 | 1 | - | - | - | 1 | - | - | - | - | - | - | - | CO1 | .{App | olying le | evel, K | L3} | | | | | | | | • | nd process | | | | | | CO2 | | onstrate
neir mir | | | | | | | S devic | es to det | ermine th | ne delays | of the ci | rcuits | | | | | CO3 | Elabo | rate the | opera | tion of I | MOS cir | cuits to | design | the sin | gle-sta | ge amplif | fiers {Cre | ating lev | el, KL6} | | | | 4 | gn | CO4 Analyze the static and dynamic CMOS design aspects to develop combinational and sequential circuits {Analyzing level, KL4} CO5 Understand the architectural aspects of CPLD and FPGA, and several advanced technologies. { | | | | | | | | | | | | | | | | | 20PC3114 | l Design | CO5 | {Analyzing level, KL4} | | | | | | | | | | | | | | | | 20 | VLSI | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | | CO1 | 2 | - | 2 | - | 2 | - | - | - | - | - | - | - | - | - | | | | | CO2 | 3 | 2 | 2 | 1 | - | - | - | - | - | - | - | - | - | - | | | | | CO3 | 3 | 2 | 2 | 1 | - | - | - | - | - | - | - | - | - | - | | | | | CO4 | 3 | 2 | 2 | 1 | - | - | - | - | - | ı | - | - | - | - | | | | | CO5 | 3 | 2 | - | - | 2 | - | - | - | - | - | - | - | - | - | CO1 | Able | to realiz | ze the c | oncept | of Obj | ect Ori | ented F | rogran | nming & | & Java P | rogramn | ning, Ar | rays | | | | | | CO2 | | to descr
eration | | | | | va such | as ope | erators, | classes, | objects, | inheritai | nce, pack | ages, | | | | ⋖ | CO3 | | | | | | | and In | put/ Ou | ıtput or | erations | 1 | | | | | | | Through JAVA | CO4 | | to desig | | | | | | | | | | | | | | | 102 | gh. | CO5 | | | | | | | | | ing and | Abstrac | t Windo | w Toolk | it | | | | .00E3102 | Jon O. | | | | - | | | - | | | | | | | | | | | 00 | 車 | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | 7 | OOPS | CO1 | - | 2 | 1 | 1 | | - | - | - | - | - | - | - | 1 | 1 | | | | 00 | CO2 | - | 2 | 2 | 2 | 1 | - | - | - | - | - | - | - | 2 | 1 | | | | | CO3 | - | 2 | 2 | 2 | 1 | - | - | - | - | - | - | - | 2 | 2 | | | | | CO4 | - | 2 | 2 | 2 | 1 | - | - | - | - | - | - | - | 2 | 1 | | | | | CO5 | - | 2 | 2 | 2 | 2 | - | - | - | - | - | - | - | 2 | 1 | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | | 1 | | | | - | | | | | | | | | | |-----------|----------------------------|-----|--|----------|----------|----------|-----------|----------|----------|--------------|-----------|----------|-----------|-------------|------------|------| | | | CO1 | | | | | | o syster | | | | | | | | | | | | CO2 | | | | | | and the | | | | | | | | | | | Jce | CO3 | | | | | • | | | | | • | apply co | onservati | ion practi | ces. | | | cie | CO4 | | | | | | of the | | | | pacts | | | | | | 103 | al S | CO5 | Under | rstand s | ocial is | sues bo | th rura | l and ur | ban en | vironm | ent | | | | | | | C3 | ent | | DO1 | DO2 | DO2 | DO4 | DOF | DOC | DO7 | DOG | DOO | DO10 | DO11 | DO12 | DCO1 | DCO2 | | 20MC3103 | Environmental Science | CO1 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | 7 | io | CO1 | 3 | - | 3 | - | 2 | - | 3 | - | 3 | - | 3 | 2 | - | - | | | 'n | CO2 | 3 | - | 3 | - | 2 | - | 3 | - | 2 | - | 3 | 3 | - | - | | | ш | CO4 | 2 | _ | 3 | - | 2 | - | 3 | _ | 2 | - | 3 | 3 | - | - | | | | CO5 | 3 | _ | 1 | _ | 3 | - | 3 | _ | 3 | _ | 3 | 2 | _ | - | | | | 003 | | _ | | | | | 3 | | | _ | | | | _ | | | | CO1 | Under | rstand t | he basic | Mathe | ematical | operati | ions of | Operati | onal A | mplifier | | | | | | | | CO2 | | | | | | | | | | прине | | | | | | | q | CO3 | Understand the basic Mathematical operations of Operational Amplifier Design and Observe the frequency response of Active Filters Measure the theoretical and practical frequency of oscillators using Operational Amplifier. Construct different Waveform Generators using Operational Amplifier and 555 Timer & Investigate different Voltage Regulators IC's Develop different Analog -Digital Converters and Digital – Analog Converters | | | | | | | | | | | | | | | | s La | CO4 | | | | | | | | | | | | | | | | | ion | | | | | | | | | | | | | | | | | .16 | cat | CO5 | Devel | op diff | erent A | nalog - | Digital | Conver | ters and | l Digita | l – Ana | log Conv | erters | | | | | 20PC3116 | Linear IC Applications Lab | | | | | | | | | | | | | | | | | 20P | Z A | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | ,, | ır (| CO1 | 3 | - | - | - | - | _ | - | - | - | - | - | - | | | | | nea | CO2 | 2 | - | - | - | - | - | - | - | - | - | - | - | | | | | := | CO3 | 3 | 3 | - | 3 | - | - | - | - | - | - | - | - | | | | | | CO4 | 2 | 3 | - | 3 | - | - | - | - | - | - | - | - | | | | | | CO5 | 2 | 3 | - | 3 | - | - | - | - | - | - | - | - | | | | | | 601 | A 1 | 4:6 | Fa | A | an o duri | امدنمه (|)_ da | الماملا | - 4 - ala | | | | | | | | | CO1 | | | | | | | | | | niques | | | | | | | | CO2 | | | | _ | | g modu | | | | | | | | | | | | CO3 | | | | | | digital | | | | | -: | مانيا مانيا | . 4 | | | | | CO4 | 1 | | | | | | | | | | | | techniq | ues. | | 7 | q | CO5 | | | IATLAB | simuli | nk mo | dels to | impler | nent v | arious | analog & | k digital | modula | tion | | | 311 | La | | techn | iques. | | | | | | | | | | | | | | 20PC3117L | ADC Lab | | DO4 | DO3 | DO3 | DC 4 | חסר | DOC | DO7 | DOO | DO0 | DO10 | DO11 | DO43 | DCO4 | DCC2 | | 20 | 1 | CO1 | PO1 3 | PO2
2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | CO1 | 3 | 2 | _ | - | 1 | _ | _ | | - | _ | _ | | 2 2 | 2 2 | | | | CO2 | 3 | 2 | | - | 1 | - | _ | - | _ | _ | | | 2 | 2 | | | | CO4 | 3 | 2 | _ | _ | 1 | _ | _ | _ | _ | _ | _ | _ | 2 | 2 | | | | CO5 | 3 | 2 | - | _ | 1 | - | _ | _ | _ | _ | _ | _ | 2 | 2 | | | | | | | <u>l</u> | <u>l</u> | | l | l . | 1 | I | <u>I</u> | 1 | 1 | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | 110070150 | | nes storios (CSA) | | | | All Control of the Control | Parameter and the second | A DANGE OF PRINCE | | red Departm | 17-14-72 | | | | |------------------|--------------------|-----------------|--|--|------------|----------|------------|----------------------------|--------------------------|-------------------|----------|-------------|--------------|------------|------------|----------| | | | CO1 | Deve | lop VH | DL sou | rce cod | e, Perfo | rm sim | ulation | using re | elevant | simulato | r | | | | | | | CO2 | Analy | ze the | simulati | on resu | lts usin | g neces | sary sy | nthesize | er | | | | | | | | | CO3 | Imple | ement co | ombina | tional a | nd sequ | ential c | ircuit d | esigns | on FPG | A board | | | | | | | q | CO4 | | | | | | | | | | ng mento | r graphic | cs. | | | | یر | Lal | CO5 | | | | | | ircuits a | | | | 8 | <i>8</i> · I | | | | | 20PC3116L | gn | | | | , 0000 101 | | 282001 | | | | | | | | | | | 3 | esi | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | OP | | CO1 | - | 102 | 2 | 3 | 3 | - | - | 100 | - | - | - | 1012 | 3 | 2 | | 7 | VLSI Design La | CO2 | | | | 3 | 3 | _ | | _ | _ | | _ | | 2 | 3 | | | | CO ₂ | - | - | 3 | 3 | 3 | | - | | | - | | _ | 2 | 3 | | | | | - | - | | | | - | - | - | - | - | - | - | | | | | | CO4 | - | - | 3 | - | 3 | - | - | - | - | - | - | - | 3 | 2 | | | | CO5 | - | - | 3 | - | 3 | - |
- | - | - | - | - | - | 3 | 3 | CO1 | | | | | of both | written | and o | ral com | munica | ition skill | s that ar | e impera | tive for a | any | | | | | | ssional | | | | | | | | | | | | | | | | CO2 | Confid | dently a | ace diffe | erent co | mpetiti | ve exar | ns and | develo | p writir | ng skills | | | | | | | | CO3 | Able t | to enha | nce ora | al comn | nunicati | ion ove | rcomin | g stage | fright | | | | | | | | C-1 | CO4 | Gain | awaren | ess of t | he indu | stry ex | pectation | ons and | draft C | CV / Ré | sumé in | lieu with | desired | job profil | es | | .03 | Soft Skilla(SAC-1) | CO5 | Crack | behavi | oral (H | R) inter | view co | nfidentl | y and e | xhibit p | rofessio | nal pers | ona | <u> </u> | <u> </u> | | | 20SC3103 | lla(| | | | | ĺ | | | | | | i i | | | | | | 08(| Skil | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | 2 | ft (| CO1 | - | - | - | - | - | - | - | - | - | 3 | - | - | - | - | | | So | CO2 | _ | _ | _ | _ | _ | _ | _ | _ | _ | 3 | _ | _ | _ | _ | | | | CO ₃ | | | _ | | | _ | _ | _ | _ | 3 | _ | 3 | _ | <u> </u> | | | | CO4 | | | _ | | | | _ | _ | _ | _ | _ | 3 | | | | | | CO ₄ | - | - | - | - | - | - | - | - | - | - | - | 2 | - | - | | | | CO3 | _ | _ | - | - | - | - | - | - | - | - | - | | - | - | | | | CO1 | | | | | | | 1 | | | | | | | | | | | CO1 | | | | | | | | | | nciples le | earned ir | i their ac | ademic | | | | | 000 | | | | | | | | | | ernship. | | | | | | | | CO2 | | | - | | • | | | | | | • | | vant to t | | | | | | | | | | | | | | | | | | ent solut | | | | | CO3 | The in | itern w | ill enha | nce the | ir comn | nunicat | ion and | collab | oration | skills by | interacti | ng with o | colleague | !S, | | | C | | super | visors, a | and clie | nts, cor | ntributii | ng effec | tively t | o team | project | s and cle | arly con | veying id | eas and | | | | Summer Internship | | inforn | nation. | | | | | | | | | | | | | | 1 | rns | CO4 | The in | itern wi | II demo | nstrate | adapta | ability a | nd flexi | bility in | dealing | g with ch | anging w | ork envi | ronment | :S, | | 310 | ıte | | tasks, | and un | foresee | n chall | enges, s | showcas | sing the | ability | to lear | n and adj | ust quicl | kly. | | • | | 2 0PR3101 | ı | CO5 | | | | | | | | | | hics, wor | | | and the | | | 20 | me | | | | | | - | | | | | ring thei | • | | | | | | Ę | | po. | turioc c | , admen | | ina asti y | эрсон | 00000 | 01 0011 | | | | р. | | | | | Sı | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | CO1 | 3 | 2 | 2 | 1 04 | 103 | 1 00 | 10/ | 1 00 | 103 | 1010 | 1011 | 1 012 | 3 | 2 | | | | CO2 | | 3 | | 2 | | _ | | | | _ | 2 | | 2 | 3 | | | | | - | 3 | _ | | - | _ | _ | _ | - 2 | - 2 | 2 | - | | | | | | CO ₃ | - | - | - | - | - | - | - | - | 3 | 3 | 2 | - | 2 | 2 | | | | CO4 | - | - | - | - | - | 2 | - | - | - | - | 2 | 3 | 2 | 2 | | | | CO5 | - | _ | - | - | - | 2 | - | 3 | 3 | - | - | - | 2 | 2 | | | | | | | | | | | | | | | | | | | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | | | | | | | A. C. | er en die een die | | | red Departin | | | | | |----------|---------------------------|-----|--------|--------------|----------|--------------|---------------------|---|-------------------|------------|----------|------------------|-----------|--------------|--------------|-------| | | | ı | T . | | | | | | 11-11 | | | _ | | | | | | | | CO1 | of Dis | screte ti | me syst | tems | | | | | | | | _ | in the an | • | | | | CO2 | | | | | | | | utation | of Disc | rete Four | rier Tran | sform & | Use the F | FT | | | | | | | | | FT of a | | | | | | | | | | | | ing | CO3 | | | | | IR) fron | n the gi | ven spe | cification | ons | | | | | | | | ess | CO4 | 1 | o realiz | | | | | | | | | | | | | | 81 | roc | CO5 | | | | | | _ | se the I | Multirat | te Proce | essing co | ncepts ir | n various | applicati | ons | | 20PC3218 | Digital Signal Processing | | &Lear | n the c | oncepts | of DSF | Proces | sors | | | | | | | | | | OPC | ign | | DC1 | DO3 | DO3 | DC 4 | חסר | DOC | DO7 | DO0 | DOO | DO10 | DO11 | DO43 | DCO1 | DCC3 | | 2 | S JE | 604 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | gita | CO1 | 3 | - | 2 | - | - | - | 1 | - | - | - | - | - | - | - | | | Ō | CO2 | 3 | - | 1 | - | - | - | 1 | - | - | - | - | - | - | - | | | | CO3 | 3 | - | 2 | - | - | - | 1 | - | - | - | _ | - | - | - | | | | CO4 | 3 | - | 1 | - | - | - | 1 | - | - | _ | - | | - | - | | | | (03 | 3 | _ | | _ | _ | _ | 1 | _ | _ | _ | _ | _ | _ | - | | | | CO1 | Unde | rstand t | he arch | itecture | of mici | roproce | ssor an | d their l | basic ha | rdware c | ompone | nts and o | peration. | 1 | | | | | | erstand | | | | | | | | | | | | | | | | CO2 | Demo | onstrate | progra | mming | skills ir | assem | oly lang | guage fo | or proce | essors. { | Analysis | level, KI | <u> 4</u> } | | | | | CO3 | Analy | ze vario | us inte | rfacing | technic | lues an | apply | them fo | or the d | lesign of | processo | or {Analy | sis level, | KL4} | | | | CO4 | | | | | | | | | | | | | KL1, KL2 | } | | 20PC3219 | 10 | CO5 | Able t | o illustr | ate hov | w the d | ifferent | on ARN | /I Corte | x proce | essors a | nd debu <u>ք</u> | g. {Analy | zing leve | l, KL3} | | | (3) | MPMC | | _ | | | , | _ | | | | | | _ | | _ | | | 20F | 2 | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | CO1 | 3 | 2 | 2 | - | - | - | 1 | - | - | - | - | - | - | - | | | | CO2 | 3 | 2 | 1 | - | - | - | 1 | - | - | - | - | - | - | - | | | | CO3 | 3 | 2 | 2 | - | - | - | 1 | - | - | - | - | - | - | - | | | | CO4 | 3 | 2 | 2 | - | - | - | 1 | - | - | - | - | - | - | - | | | | CO5 | 1 | 2 | 3 | - | - | - | 3 | - | - | - | - | - | - | - | | | | CO1 | | | | | rectang | | | | | | | | | | | | | CO2 | | | | | ious wa
ation of | | | | | | e microv | wave ene | ergy in a | | | | | CO3 | | | | | | | | | | l optical | fiber co | nnectors | | | | | | CO4 | | | | | | | | | | | | | ne opera | tions | | | | | | | | | cal syst | | | 341000 | | 221015 10 | . , | o rour un | по ореги | | | 20 | 00 | CO5 | | | | | | | | using a | a Micro | wave te | st bench | and opti | ical | | | 20PC3220 | MW&OC | | measu | ıremen | ts using | g block | diagra | m opera | ations. | | | | | 1 | | | | 20P | Σ | | T | 1 | Г | 1 | | Г | Ī | 1 | 1 | T | 1 | | | 1 | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | CO1 | 3 | 2 | 2 | - | 3 | - | - | - | - | - | - | - | - | - | | | | CO2 | 2 | 3 | - | - | 2 | - | - | - | - | - | - | - | - | - | | | | CO3 | 2 | - | 2 | - | - | - | - | - | - | - | - | 2 | - | - | | | | CO4 | - | - | 3 | 2 | 2 | - | - | - | - | - | - | - | - | - | | | | CO5 | 3 | - | - | - | 3 | - | - | - | - | - | - | - | - | - | | 1 | | | | | | | | | | | | | | | | | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | T == . | 77 1 | . 1 | 0 D | | .1 C | - | 1 | Constitution of the contract o | | c 1 · | • | • • | | 1 | | |-----------|---------------------------|--------|---|-----------|----------|----------|----------|---------|----------|--|-----------|------------|------------|-----------|------------|-------|--| | | | CO1 | _ | | | | | | | | | | | | ntennas . | | | | | | CO2 | | | | | | | | | | antennas | | | | | | | | | CO3 | Const
of arr | | e basic | array s | ystem i | n anter | nnas an | d Draw | the Ra | diation I | Mechani
 sms for | different | types | | | | | CO4 | | ze the | operati | on of V | HF. U | HF and | Micro | wave A | ntenna | ıs. | | | | | | | 20PE3201 | ٦ | CO5 | | | | | | | | | | radio w | ave pror | agation | | | | | | AWP | | 100110 | | | | anospin- | | | | | | w.v prop | - ugunon | | | | | 20F | 1 | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | | CO1 | 2 | 3 | - | - | 2 | - | - | - | - | - | - | - | 3 | 2 | | | | | CO2 | 3 | 2 | _ | _ | 3 | _ | _ | _ | _ | _ | _ | _ | 3 | 3 | | | | | CO3 | 3 | | 3 | <u> </u> | _ | _ | _ | _ | _ | _ | _ | 2 | 2 | 3 | | | | | CO4 | - | _ | 2 | 3 | 3 | - | _ | _ | _ | _ | _ | - | 2 | 3 | | | | | CO5 | 2 | _ | _ | 3 | - | _ | _ | _ | _ | _ | _ | 2 | 3 | 2 | | | | | 003 | | | | | | | | | | _ | _ | | | | | | | , , | 1 | T | | | | | | | | | | | | | | | | | | CO1 | Understand logical and arithmetic functions performed by 8086 and use them to implement processing activities Demonstrate the interfacing of I/O with 8086 for real-time applications. Develop assembly language programs to perform stack and code conversion operations | CO2 | | | | | | | | | | | | | | | | | | | CO3 | | | | | | | | | | | | | S | | | | _ | q | CO4 | | | | | | | | | | s and arra | | | | | | | 21 | La | CO5 | Asses | ss the fu | ınction | al perfo | ormanc | e of AF | RM mic | roconti | rollers 1 | using sin | nulators. | | | | | | 20PC3221L | MPMC Lab | | | | | | | | | | | | | | | | | | 0. | ΛΡΙ | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | 7 | _ | CO1 | 3 | - | - | - | - | - | - | - | - | - | - | 3 | 3 | 2 | | | | | CO2 | - | - | 3 | | 3 | 2 | - | - | - | - | - | 3 | 3 | 3 | | | | | CO3 | - | - | 3 | 3 | 3 | - | - | - | - | - | - | 3 | 3 | 3 | | | | | CO4 | - | - | - | - | 2 | - | - | - | - | - | - | 3 | 2 | 3 | | | | | CO5 | 3 | - | 3 | 3 | 3 | - | - | - | - | - | - | 3 | 3 | 3 | CO1 | | | | | | | | | metic o | perations | on sign | als and o | btain the | | | | | | | | nse of tl | | | | | | | | | | | | | | | | Lab | CO2 | | | | | | | | | | computat | | _ | | | | | | | CO3 | | | | | | | function | ns and | design l | FIR, and | IIR filter | rs for ba | nd pass, l | band | | | | sin | | | low pas | | | | | | | | | | | | | | | 31 | Digital Signal Processing | CO4 | | ruct the | | | | | | | | | | | | | | | 20PC3223L | ² ro | CO5 | Under | rstand tl | he archi | tecture | of TMS | \$320C6 | 5713 DS | SP Proc | essors a | ind emplo | oy it for | real time | processi | ng. | | | PC | alF | | T | | 1 | 1 | | T | | 1 | T | T | T | 1 | | | | | 20 | ign | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | al S | CO1 | 3 | - | - | - | - | - | - | - | - | - | - | - | 3 | 1 | | | | igit | CO2 | 3 | - | - | - | - | - | - | - | - | - | - | - | 2 | 3 | | | | ٥ | CO3 | 3 | - | _ | _ | 3 | - | - | _ | - | - | - | - | 1 | 3 | | | | | CO4 | 3 | - | - | - | 2 | - | - | - | - | - | - | - | 1 | 2 | CO5 | 3 | - | - | - | 2 | - | - | - | - | - | - | - | 2 | 2 | | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | CO1 | Identi | fy and o | demons | trate the | e worki | ng of va | arious 1 | nicrowa | ave Pas | sive com | ponents. | | | | |---------------|--------------------|--|---|--|--|--|---|--
--|--|---------------------------------|---|--------------------------|-------------------------------|--------------------------|------------------| | | | CO2 | Analy | ze the c | haracte | ristics (| of differ | rent mic | crowav | e source | es | | | | | | | | | CO3 | Evalu | ate scat | tering p | aramet | ers of n | nicrowa | ve pass | ive con | nponent | s. | | | | | | | | CO4 | Analy | ze the c | haracte | ristics (| of diffe | rent opt | ical sou | irces | | | | | | | | 2L | MW&OC Lab | CO5 | Evalu | ate vari | ous opt | ical fib | er parai | neters a | and ana | lyze an | optical | fiber con | nmunicat | tion link. | | | | 20PC3222L | 2 | | | | | | | | | | | | | | | | | PC | 8 | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | 20 | S | CO1 | 3 | 2 | - | - | - | - | - | - | 2 | - | - | 2 | 2 | 2 | | | _ | CO2 | 3 | 3 | - | - | - | - | - | - | 2 | - | - | 2 | 2 | 2 | | | | CO3 | 3 | 3 | - | - | - | - | - | - | 2 | - | - | 2 | 3 | 3 | | | | CO4 | 3 | 3 | - | - | - | - | - | - | 2 | - | - | 2 | 2 | 3 | | | | CO5 | 3 | 3 | - | - | - | - | - | - | 2 | - | - | 2 | 3 | 3 | CO1 | To de | velop w | ebpage | S | | | | | | | | | | | | | _ | CO2 | To de | velop d | ynamic | webpa | ges usii | ng Java | script | | | | | | | | | | C-2 | CO3 | To cre | eate DT | D's , X | ML sch | nemas | | _ | | | | | | | | | | SA | CO4 | To cre | eate wel | osites u | sing PF | łΡ | | | | | | | | | | | 4 | nt(| CO5 | To de | velop w | ebsites | using I | Databas | ses | | | | | | | | | | 320 | me | | | | | | | | | | | | | | | | | | ō | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | SC | <u> </u> | | 101 | 102 | | | | | | | | | | | | | | 20SC3204 | svelo | CO1 | - | - | 2 | - | 2 | - | - | - | - | - | - | - | 2 | 2 | | 20SC | Development(SAC-2) | CO1 | - | - | | - | 2 2 | - | - | - | - | - | 2 | - | 2 - | 2 - | | 20SC | /eb Develo | | - | - | 2 | -
-
- | | | | | | -
-
- | | | - | | | 20SC | Web Develo | CO2 | - | - | 2 2 | | 2 | | _ | - | | | 2 | | - | | | 20SC | Web Develo | CO2
CO3 | - | - | 2 2 | | 2 | - | - | - | -
-
-
- | | 2 2 | | - | | | 20SC | Web Develo | CO2
CO3
CO4 | -
-
- | -
-
- | 2 2 | - | 2 2 | - | | -
- | -
-
- | - | 2 2 - | - | -
-
- | -
- | | 20SC | Web Develo | CO2
CO3
CO4 | -
-
-
2 | -
-
-
2 | 2 2 2 | - 3 | 2 2 3 | - | | | - | - | 2 2 - | - | -
-
- | -
- | | 2080 | Web Develo | CO2
CO3
CO4
CO5 | -
-
-
-
2 | -
-
-
2 | 2
2
2
-
- | - 3 | 2 2 3 and proof | -
-
cess for | Value | -
-
-
- | -
-
on. | - | 2 2 - 2 | - | -
-
- | -
- | | 20SC | Web Develo | CO2
CO3
CO4
CO5 | -
-
-
-
2
Under
Exten | -
-
-
2
estandin | 2
2
2
-
-
g the co | - 3 ontent a in the h | 2
2
3
and produman b | -
-
cess for
being, fa | Value | -
-
-
- | -
-
on. | | 2 2 - 2 | - | -
-
- | -
- | | 20SC | Web Develo | CO2
CO3
CO4
CO5 | 2 Under Exten Build | -
-
-
2
estandin
d the ha | 2
2
2
-
-
g the courmony | - 3 Ontent a in the hing of s | 2
2
3
and produman to self-refl | cess for being, fa | -
-
-
-
Value o | -
-
-
-
education | on. | -
-
-
ure/existe | 2 2 - 2 2 ence | | -
-
- | 2 | | 20SC | Web Develo | CO2
CO3
CO4
CO5
CO1
CO2
CO3
CO4 | 2 Under Exten Build Apply values | -
-
-
2
standin
d the ha
the Stree
to All | 2
2
2
-
g the coarmony
engthen
levels b | ontent a in the ling of secome onship | 2
2
3
and procuman beelf-refl
sensitive | cess for being, faction. | Value of amily, seir committee; | -
-
-
education
society a | on. and natu | -
-
-
ure/existe | 2
2
-
2
ence | -
-
-
-
underste | -
-
2 | -
-
-
2 | | | Web | CO2
CO3
CO4
CO5
CO1
CO2
CO3 | 2 Under Exten Build Apply values Devel | -
-
-
2
standin
d the ha
the Stre
to All | 2 2 2 - g the courmony engthen levels but n relation of a hor | ontent a in the hing of specome onship olistic p | 2
2
3
and procuman beelf-reflusensitive and hur erspects | cess for being, faction. | Value of amily, seir committee; | -
-
-
education
society a | on. and natu | -
-
-
ure/existe | 2
2
-
2
ence | -
-
-
-
underste | 2 | -
-
-
2 | | | Web | CO2
CO3
CO4
CO5
CO1
CO2
CO3
CO4 | 2 Under Exten Build Apply values Devel | -
-
-
2
standin
d the ha
the Stree
to All | 2 2 2 - g the courmony engthen levels but n relation of a hor | ontent a in the hing of specome onship olistic p | 2
2
3
and procuman beelf-reflusensitive and hur erspects | cess for being, faction. | Value of amily, seir committee; | -
-
-
education
society a | on. and natu | -
-
-
ure/existe | 2
2
-
2
ence | -
-
-
-
underste | -
-
2 | -
-
-
2 | | | UHV-2 Web Develo | CO2
CO3
CO4
CO5
CO1
CO2
CO3
CO4 | Under Exten Build Apply values Devel societ | standing the Street to All specifies, human opments of the street to a specifies of the street to the street to the specifies of the street to | 2
2
2
-
g the consumption of | ontent a in the hing of specome onship olistic pristence | 2
2
3
and procuman beelf-reflusensitive and hurverspect. | cess for being, faction. | Value of amily, so the committee of | education | on. and nature t toward oration | -
-
-
ure/existed
ds what t | 2
2
-
2
ence | | ood (humbeing), fa | amily, | | 20HS3205 20SC | Web | CO2
CO3
CO4
CO5
CO1
CO2
CO3
CO4 | 2 Under Exten Build Apply values Devel | -
-
-
2
standin
d the ha
the Stre
to All | 2 2 2 - g the courmony engthen levels but n relation of a hor | ontent a in the hing of specome onship olistic p | 2
2
3
and procuman beelf-reflusensitive and hur erspects | cess for being, faction. | Value of amily, seir committee; | educations ociety amitmen | on. and natu | -
-
-
ure/existe | 2
2
-
2
ence | | -
-
2 | -
-
-
2 | | | Web | CO2
CO3
CO4
CO5
CO1
CO2
CO3
CO4
CO5 | Under Exten Build Apply values Devel societ | standing the Street to All sopments y and no | 2 2 2 - g the coarmony engthen levels bar relation of a horature/ex | and a special strains of | 2 2 3 and procuman beelf-refluencerspects. | cess for being, farection. We to the man sociative base | Value of amily, seir committee of | education | on. and nature t toward oration | -

ure/existeds what the about the PO10 | 2 2 2 ence hey have | c underster (human | ood (humbeing), fa | amily, | | | Web | CO2
CO3
CO4
CO5
CO1
CO2
CO3
CO4
CO5 | Under Exten Build Apply values Devel societ | standing the Street to All sopment y and no | 2 2 2 - g the control of a horacture/extends by a horacture | ontent a in the hing of secome onship olistic pristence | 2 2 3 and procuman beelf-reflesensitive and hur erspects. | cess for being, faction. The to the man socious base PO6 2 3 | Value of amily, series complete on series PO7 | educations ociety amitmen | on. and nature toward oration | | 2 2 2 2 ence hey have | c understand (human PO12 3 2 | 2 ood (humbeing), f | amily, | | | Web | CO2
CO3
CO4
CO5
CO1
CO2
CO3
CO4
CO1
CO2
CO3 | Under Exten Build Apply values Devel societ
 standing the Street to All sopment y and no | g the coarmony engthen relation of a horature/ex | and a special strains of | 2 2 3 and procuman belf-refl sensitive and hur erspects. | cess for being, farection. We to the man socious base PO6 2 3 3 | Value of amily, series complete on series PO7 | educations ociety a mitmen PO8 3 | on. and nature t toward oration | -

ure/existeds what the about the PO10 | 2 2 2 ence hey have | c underster (human PO12 3 2 3 | ood (humbeing), fa | amily, | | | Web | CO2
CO3
CO4
CO5
CO1
CO2
CO3
CO4
CO1
CO2
CO3
CO4 | Under Exten Build Apply values Devel societ | standing the Street to All sopment y and no | 2 2 2 | ontent a in the hing of secome onship olistic pristence | 2 2 3 and procuman belf-reflesensitive and hur erspect. | cess for being, faction. The to the man sociative base PO6 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | Value of amily, series committee of the poor series | education society and mitmen POS 3 - 3 | on. and naturation | | 2 2 2 2 ence hey have | | 2
cood (humbeing), f. | amily, | | | Web | CO2
CO3
CO4
CO5
CO1
CO2
CO3
CO4
CO1
CO2
CO3 | Under Exten Build Apply values Devel societ | standing the Street to All sopment y and no | g the coarmony engthen relation of a horature/ex | ontent a in the hing of secome onship olistic pristence | 2 2 3 and procuman belf-refl sensitive and hur erspects. | cess for being, farection. We to the man socious base PO6 2 3 3 | Value of amily, series complete on series PO7 | educations ociety a mitmen PO8 3 | on. and nature toward oration | | 2 2 2 2 ence hey have | c underster (human PO12 3 2 3 | 2 ood (humbeing), f | amily, | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | CO1 | To pr | ovide a | n intens | ive & i | n-depth | learnir | g to the | studer | nts in fie | eld of ent | repreneu | ırship | | 1 | | |----------|--|-----------------|----------|--|-----------|---------------|--------------------|-----------|---------------------------------------|----------|--------------|------------|-----------|------------|-----------|--------|--| | | | CO2 | | | | | | | | | | ve career | | ~ <u>r</u> | | | | | | 늘 | CO3 | | | | | | | - | | | g in the e | | | | | | | | lopme | CO4 | | quaint t | | | | | | | | | | nomic de | velopme | nt of | | | 20MC3204 | Entrepreneurial Skill Development | CO5 | | alyze tł | ne role (| of gove | rnment | and nor | n-gover | nment i | instituti | ons in su | pporting | entrepre | neurial | | | | MC | al S | | | | | | | | | | | | | | | | | | 20 | euri | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | ren | CO1 | 2 | 3 | 3 | - | - | - | - | 1 | | - | 3 | 2 | - | - | | | | rep | CO2 | - | - | - | - | - | 3 | - | 1 | 3 | - | 2 | 2 | - | - | | | | Ent | CO3 | - | - | - | - | - | 3 | - | 1 | - | - | 2 | 2 | - | - | | | | • | CO4 | - | - | - | - | - | 3 | 2 | 1 | - | - | 2 | 2 | - | - | | | | | CO5 | - | 2 | - | 3 | - | - | - | 1 | - | 1 | 2 | 2 | - | - | | | | | | | 1 | | 1 | 1 | ' | IV-I | 1 | 1 | | | | 1 | | | | | | CO1 | T T1 | | ا المما | . 1 ' | | | | | | . C-1- | i 1- | 1. o 1 - | , and Dis | | | | | | CO1 | | | _ | | | | | | | | orize ioo | ok angles | , and Dis | cuss | | | | | CO2 | | nunches, launch vehicles and orbital effects in satellite communications analyze the various satellite subsystems and their functionalities evaluate satellite link design and Apply the concepts of multiple access and various types of multiple eccess techniques in satellite systems. | | | | | | | | | | | | | | | | on | | | | | | | | | | | | | | | | | | | ati | CO3 | | | | | | | | | | | | | | | | | | nic | CO4 | | | | | ologies | | h coam | ont | | | | | | | | | 103 | nu | CO ₅ | | | | | red by s | | | | tions | | | | | | | | E4: | Communication | CO3 | Desci | ibe the | SCI VICE | s rende | icu by s | satemite | and its | аррпса | mons | | | | | | | | 20PE4103 | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | ,,, | ite | CO1 | - | 2 | - | 704 | - | 700 | - | - | - | - | - | 3 | 2 | 3 | | | | Satellite | CO2 | 3 | 2 | | _ | _ | _ | - | _ | - | | _ | - | 3 | 3 | | | | Sat | CO3 | 3 | 3 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 3 | 2 | | | | | CO4 | 3 | | 3 | | _ | _ | _ | _ | _ | _ | _ | _ | 2 | 2 | | | | | CO ₅ | 3 | | 3 | | _ | _ | _ | | - | | _ | _ | 2 | 2 | | | | <u> </u> | CO3 | <i>J</i> | <u> </u> | 3 | <u> </u> | | <u> </u> | <u> </u> | _ | 1 | _ | | | | | | | | <u> </u> | CO1 | David | ا عائم ما | Dadas : | 000000 | matica: | and C = 1 | · · · · · · · · · · · · · · · · · · · | rtios1 | mohla | | | | | | | | | | CO1 | | | | | uation | | | | | | | | | | | | | | CO2 | | | | | % FM | | | 11 | | | | | | | | | | 20 | CO3 | | | | | | | | | | rforman | ce. | | | | | | | ii. | CO4 | | | • | | king and | | | | | | | | | | | | 20PE4102 | Engineering | CO5 | | | | | of mato
display | | er rece | iver per | formar | ice and E | valuate 1 | the vario | us comp | onents | | | `E4 | ng | | | | | | | | | | | | | | | | | | 20F | F | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | Radar | CO1 | 3 | 2 | - | - | - | - | - | - | _ | - | _ | 2 | 2 | 3 | | | | Ra | CO2 | 3 | 2 | _ | - | _ | - | - | _ | _ | _ | - | 2 | 2 | 3 | | | | | CO3 | 3 | 2 | - | - | - | - | - | - | - | - | - | 2 | 2 | 3 | | | | | CO4 | 3 | 2 | - | - | - | - | - | - | - | - | - | 2 | 2 | 3 | | | | | CO5 | 3 | 2 | - | - | - | - | - | - | - | - | - | 2 | 3 | 3 | | | | | | | | | | 1 | | | | | | | _ | | | | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | CO1 | | | | | | | | | | different | | | | | | |------------|---------------|---|--|--
--|--|--|--|--------------------------------------|--------------------------------------|--|---|---|---|-----------------------------|------------------------------------|--| | | | CO2 | Learn | variou | s image | proces | sing tec | hnique | s like ii | nage er | hancen | nent both | in spatia | al and fre | equency o | domain | | | | | CO3 | Famil | iarize v | vith bas | ic resto | ration to | echniqu | es | | | | | | | | | | | Processing | CO4 | Unde | rstand s | egment | ation a | nd mort | hologic | cal tech | niques | applica | ble to vai | rious tasl | KS | | | | | 4 | seo | CO5 | | | | | | | | | | ession m | | | | | | | 10 | Prc | | 1 | | | | | | | | | | | | | | | | 20PE4104 | age | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | 20 | Digital Image | CO1 | 2 | 2 | - | _ | _ | _ | _ | _ | _ | _ | _ | _ | 2 | 2 | | | | igita | CO2 | 2 | 3 | - | - | _ | _ | - | - | _ | - | - | _ | 3 | 2 | | | | Ο | CO3 | 3 | 2 | - | _ | _ | _ | - | _ | _ | - | - | - | 3 | 2 | | | | | CO4 | 3 | 2 | - | - | 2 | _ | - | - | _ | - | - | 3 | 3 | 2 | | | | | CO5 | 3 | 3 | - | - | 3 | 2 | - | - | - | - | - | 3 | 3 | 3 | | | | 1 | I. | -1 | ı | | | | ı | I | I | ı | | | | | | | | | | CO1 | Know | inner v | working | s of ce | llular sy | /stem aı | nd Des o | ribe th | e eleme | nts of ce | llular sys | stems. | | | | | | ےِ | CO2 | | Anow inner workings of cellular system and Describe the elements of cellular systems. Categorize different interferences and Analyze cell coverage for signal and traffic in various nvironments. Distinguish the frequency management and channel assignments in cellular system and Understand the | | | | | | | | | | | | | | | | Communication | | _ | | | | | | | | | | | | | | | | | ica | CO3 | Distir | iguish t | he frequ | iency n | nanager | nent an | d chanı | nel assig | gnments | in cellu | lar systei | m and U | nderstan | d the | | | | n | | hando | offs in c | ellular | systems | S | | | | | | • | | | | | | ī. | nm | CO4 | Deter | mine di | gital ce | llular s | ystems. | | | | | | | | | | | | 20PE4105 | Sor | CO5 | Interp | ret adv | anceme | nt in m | odern c | ellular t | technol | ogies. | | | | | | | | | ÞE | ar (| | | | | | • | | | | | | | | | | | | | 3 | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | 7 | □ = □ | | 101 | | | | | | | | | | | | | | | | 2 | Cellular | CO1 | - | 3 | - | - | - | - | - | - | - | - | - | - | 3 | 2 | | | 2 | | CO2 | | 3 | 3 | - | - | - | - | - | - | - | - | - | 3 | 2 | | | 2 | | CO2
CO3 | - | 3 3 3 | 3 3 | -
-
- | | | | - | - | | | - | 3 2 | 3 | | | 2 | Mobile Cell | CO2
CO3
CO4 | 2 | 3
3
3 | 3
3
3 | 2 | - | - | - | -
-
- | -
-
- | - | | - | 3 2 3 | 2
3
2 | | | 2 | | CO2
CO3 | 2 | 3 3 3 | 3 3 | | - | - | - | - | -
-
- | - | - | - | 3 2 | 3 | | | 26 | | CO2
CO3
CO4
CO5 | -
2
-
- | 3
3
3
3 | 3
3
3
3 | 3 | | | | | - | -
-
- | -
-
- | - 3 | 3 2 3 | 2
3
2 | | | 2 | | CO2
CO3
CO4
CO5 | - 2 Acqua | 3
3
3
3
3 | 3
3
3
3
3 | 2
3
essentia | -
-
-
al to cre | -
-
-
-
ating, a | -
-
-
-
nd eval | -
-
-
uating | -
marketi | -
-
-
- | -
-
-
-
ties. (K2 | - 3 | 3 2 3 | 2
3
2 | | | 2 | Mobile | CO2
CO3
CO4
CO5 | - 2 Acqua | 3 3 3 3 3 aint wit | 3 3 3 3 h tools | 2
3
essentia | -
-
-
al to cre | -
-
-
-
ating, a |
-
-
-
-
nd eval | -
-
uating ting ne | -
marketi
w produ | -
-
-
ng activi | -
-
-
-
ties. (K2 | - 3 | 3 2 3 3 | 2
3
2 | | | 2 | Mobile | CO2
CO3
CO4
CO5
CO1
CO2
CO3 | - 2 Acqua Demo | 3 3 3 3 3 aint with the constration of constraint constra | 3 3 3 3 h tools ng the k he proc | 2
3
essentia
ey tech
ess of s | -
-
-
al to cre
niques | ating, a | -
-
-
-
nd eval
marke | -
-
uating ting new | -
marketi
w produ | -
-
-
ng activingts. (K6) | ties. (K2 | -
-
3 | 3 2 3 3 3 | 2
3
2 | | | 2 | ement Mobile | CO2
CO3
CO4
CO5
CO1
CO2
CO3
CO4 | - 2 | 3 3 3 3 3 aint with constrating loping to and selections. | 3 3 3 3 h tools ng the k he proceeding the second to s | 2
3
essentia
ey tech
ess of s | -
-
-
al to cre
niques
trategic | ating, a used for decision that the tha | -
-
-
nd eval
marke | uating ting for | -
marketi
w produ
effectiv | -
-
-
ng activincts. (K6
e Pricing | ties. (K2 | -
-
3 | 3 2 3 3 3 | 2
3
2 | | | | ement Mobile | CO2
CO3
CO4
CO5
CO1
CO2
CO3 | - 2 | 3 3 3 3 3 aint with constrating loping to and selections. | 3 3 3 3 h tools ng the k he proceeding the second to s | 2
3
essentia
ey tech
ess of s | -
-
-
al to cre
niques
trategic | ating, a used for decision that the tha | -
-
-
nd eval
marke | uating ting for | -
marketi
w produ
effectiv | -
-
-
ng activingts. (K6) | ties. (K2 | -
-
3 | 3 2 3 3 3 | 2
3
2 | | | | ement Mobile | CO2
CO3
CO4
CO5
CO1
CO2
CO3
CO4 | - 2 | 3 3 3 3 aint wite onstrating loping to and sell loping a | 3 3 3 3 h tools ng the k he proceeding the holisti | 2
3
essentia
ey tech
ess of s
the righ
c persp | al to cre
niques
trategion
t marke | ating, a used for decision that tha | nd eval | uating ting nering for norder | marketi
w produ
effectiv
to mee | ng activirencts. (K6) e Pricing t strategi | ties. (K2) | -
-
3
)
ucts. (K6
ves. (K3 | 3 2 3 3 3 | 2 3 2 3 | | | | ement Mobile | CO2
CO3
CO4
CO5
CO1
CO2
CO3
CO4
CO5 | - 2 | 3 3 3 3 aint with constrating loping to and selection and selection are loping at lopi | 3 3 3 3 h tools ng the k he proceeding the second to s | essential ey tech ess of sthe right c persp | -
-
-
al to cre
niques
trategic | ating, a used for decision of differ | nd eval | uating ting for | marketi
w produ
effectiv
to mee
land Sc | ng activincts. (K6 e Pricing t strategiape (K6) | ties. (K2) c of Production of the cobjection | - 3
3
ucts. (K6
ves. (K3 | 3
2
3
3
3 | 2
3
2 | | | 200E4103 2 | ement Mobile | CO2
CO3
CO4
CO5
CO1
CO2
CO3
CO4
CO5 | Acqua
Demo
Devel
Study
Devel | 3 3 3 3 aint wite onstrating loping to and sell loping a | 3 3 3 3 h tools ng the k he proceeding the holisti | 2
3
essentia
ey tech
ess of s
the righ
c persp | al to cre
niques
trategion
t marke | ating, a used for decision the differ PO6 | nd eval | uating ting nering for heting PO8 | marketi
w produ
effectiv
to mee
land Sc. | ng activirencts. (K6) e Pricing t strategi | ties. (K2) g of Product objection | - 3
)
ucts. (K6
ves. (K3 | 3
2
3
3
3
5) | 2 3 2 3 | | | | ement Mobile | CO2
CO3
CO4
CO5
CO1
CO2
CO3
CO4
CO5 | - 2 | 3 3 3 3 aint with constrating loping to and selection and selection are loping at lopi | 3 3 3 3 h tools ng the k he proceeding the holisti | essential ey tech ess of sthe right c persp | al to cre
niques
trategion
t marke | ating, a used for decision of differ | nd eval | uating ting newing for norder-keting | marketi w produ effectiv to mee land Sc | ng activincts. (K6) e Pricing t strategiape (K6) PO10 2 | ties. (K2) g of Production objection objection 3 2 | - 3
3
ucts. (K6
ves. (K3 | 3
2
3
3
3 | 2 3 2 3 | | | | Mobile | CO2
CO3
CO4
CO5
CO1
CO2
CO3
CO4
CO5 | Acqua
Demo
Devel
Study
Devel | 3 3 3 3 aint with constrating loping to and selection and selection are loping at lopi | 3 3 3 3 h tools ng the k he proceeding the holisti | essential ey tech ess of sthe right c persp | al to cre
niques
trategion
t marke | ating, a used for decision the differ PO6 | nd eval | uating ting for in order keting | marketi
w produ
effectiv
to mee
land Sc. | ng activincts. (K6 e Pricing t strategiape (K6) | ties. (K2) g of Product objecti PO11 3 2 1 | - 3
)
ucts. (K6
ves. (K3 | 3
2
3
3
3
5) | 2 3 2 3 | | | | ement Mobile | CO2
CO3
CO4
CO5
CO1
CO2
CO3
CO4
CO5
CO1
CO2
CO3
CO4 | - 2 | 3 3 3 3 3 aint wittenstrating loping to and selections are level to a t | 3 3 3 3 h tools ng the k he proceeding to holisti PO3 | 2 3 essentiately techness of sthe right copersp | al to cre niques intrategic t market ective of | ating, a used for decision of differ | nd eval | uating ting nering for horder keting | marketi w produ effectiv to mee land Sc. PO9 3 1 - | ng activiracts. (K6) e Pricing t strategiape (K6) PO10 2 | | - 3
oucts. (K6
ves. (K3 | 3
2
3
3
3
5) | 2
3
2
3 | | | | ement Mobile | CO2
CO3
CO4
CO5
CO1
CO2
CO3
CO4
CO5 | - 2 | 3 3 3 3 aint wite onstrating loping to and self loping a PO2 | - 3 3 3 3 3 h tools ng the k he procedecting to holisti PO3 | 2 3 essential ey tech ess of sthe right c persp PO4 | al to cre niques trategic t marke ective o | ating, a used for decision the decision of differ | nd eval | uating ting for in order keting | marketi
w produ
effectiv
to mee
land Sc. | ng activiracts. (K6) e Pricing t strategiape (K6) PO10 2 - | ties. (K2) g of Product objecti PO11 3 2 1 | | 3
2
3
3
3
5) | 2
3
2
3
PSO2
-
- | | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | CO1 | Under | rstand v | vhy hui | ldings s | should b | ne made | enerox | efficie | nt | | | | | | | |----------|--------------------------------|--|--
--|---|--|--|--|--|--|---|---|---|--|---|-------------------------|--| | | | CO2 | | | | | | | | | | Passive S | olar heati | ing and c | ollection | | | | | | COZ | | | | | | | | | | n to gree | | _ | | , | | | | | CO3 | | | | | | | | | | ilding Fa | | <u>s concep</u> | ,,,, | | | | | | CO4 | | | | | | | | | | | | Fnerov | Manage | ment | | | | Buildings | CO4 | | ater co | | | mma | tion and | i ventne | mon, L | igittiig, | Treating | , Coomi | s, Liici gy | vivianage | ment | | | 104 | ij | CO5 | | | | | | | | | | | | | ergy Effi | cient | | | 200E4104 | Bu | | Build | ings. Tl | ney sha | ll be eq | uipped | with the | e associ | ated cu | tting-ed | ge mana | gement s | trategies | too. | | | | 502 | Green | | 1 | | | T | T | T | T | • | • | | | T | 1 | | | | `` | Gre | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | | CO1 | 2 | - | - | - | - | 1 | 3 | - | 2 | 1 | - | - | - | - | | | | | CO2 | 2 | - | - | - | - | 1 | 3 | - | 2 | 1 | - | 1 | - | - | | | | | CO3 | 2 | - | 3 | - | - | - | 3 | - | 2 | 1 | - | 2 | - | - | | | | | CO4 | 2 | - | 3 | - | - | 2 | 3 | - | 2 | 1 | - | 2 | - | - | | | | | CO5 | 2 | - | - | - | - | 1 | 3 | - | 2 | 1 | - | 1 | - | - | CO1 | | | | | | | nd its v | arious | applicat | ions, as | well as th | ne function | oning of | | | | | | | | erry Pi | | | | | | | | | | | | | | | | (£-) | CO2 | | | | • | | | | | | | | <u> </u> | | | | | |) AC | CO3 | 1 7 1 3 | | | | | | | | | | | | | | | | |)S(| ~~. | | | | | | | | | | | | | | | | | L L | ioi | CO4 | | | | | | | | | | elected c | | | | _ | | | 10 | cat | CO5 | | • | | • | | at apply | IoT co | oncepts | to real- | world ap | plication | s in vario | ous fields | and | | | 20SC4105 | Applications (SAC-3) | | troub | leshoot | IoT app | plication | ns. | | | | | | | | | | | | 206 | Ϋ́ | | | | | | | | | 200 | | 2010 | 5011 | 2010 | | | | | | 8 | GO 1 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | Tools | CO1 | 3 | - | - | - | 2 | 1 | - | - | - | - | - | - | 3 | 1 | | | | | | | - | 3 | - | - | - | - | - | 2 | 1 | - | - | 3 | 2 | | | 1 | - | CO2 | - | | | | | | | | | | | | _ | | | | | ЮТ | CO3 | - | - | - | 3 | - | - | - | - | - | - | 2 | - | 3 | 1 | | | | loT | CO3
CO4 | | - | 3 | 3 | - | - | - | - | 2 | - | 3 | - | 3 | 2 | | | | IoT | CO3 | - | - | | | | | | | 2 2 | | | | | | | | | IoT | CO3
CO4 | - | - | | | | | | - | | | | - | 3 | 2 | | | | Tol | CO3
CO4 | | - 3 | 3 | - | - | - | - | - | 2 | - | 3 | 1 | 3 | 2 | | | | Tol | CO3
CO4
CO5 | -
-
-
The in | -
3 | 3
- | -
-
le to ap | -
oply the | -
-
theore | -
-
tical co | -
-
ncepts | 2
and pri | -
-
nciples le | 3 | 1 | 3 | 2 | | | | Tol | CO3
CO4
CO5 | -
-
The in | -
3
atern wi | 3
-
II be ab | -
-
le to ap | -
-
pply the
tuation | -
theore | -
-
tical co | -
-
ncepts
during | 2
and
pri
the into | -
-
nciples le
ernship. | 3
-
earned in | -
1
their ac | 3
3
ademic | 2 2 | | | | Tol | CO3
CO4
CO5 | -
-
-
The in
course | -
3
stern wi | 3
-
II be ab
o real-v | -
le to ap
vorld si | -
oply the
tuation
n expe | theore | -
tical co
intered | -
ncepts
during
fying ar | 2
and pri
the into | -
-
nciples le
ernship.
ng practi | 3
-
earned in | -
1
their ac | 3
3
ademic | 2
2
heir | | | | Tol | CO3
CO4
CO5
CO1 | The in course | -
3
atern wi
ework t
atern wi | 3
-
II be ab
o real-v
II gain h
or indu | -
le to ap
vorld sinands-oustry, de | -
oply the
tuation
on exper | theore
s encourience in | tical co
intered
n identi
he abili | -
ncepts
during
fying ar
ty to an | and pri
the into
nd solvi
alyze, t | -
nciples le
ernship.
ng practi
roublesh | 3 - earned in cal probl oot, and | their ac | 3
3
ademic
evant to t | 2
2
heir
ions. | | | | Tol | CO3
CO4
CO5 | The in course The in field c | -
3
attern wi
ework t
atern wi
of study | 3 - II be above real-version indu | -
ole to ap
vorld si
nands-o
istry, de
nce the | -
oply the
tuation
in exper
emonst | theore
s encourience in
rating the | -
tical co
intered
n identi
he abili | -
ncepts
during
fying ar
ty to an
collabo | and pri
the into
nd solvi
alyze, to | -
nciples le
ernship.
ng practi
roublesh
skills by | 3 - earned in cal probl oot, and interaction | their ac | 3 3 ademic evant to tent solut colleague | 2
2
heir
ions. | | | 02 | Tol | CO3
CO4
CO5
CO1 | The in course The in field course the insupervision of | -
3
atern wi
ework t
atern wi
of study
utern wi | 3 - II be above real-version indu | -
ole to ap
vorld si
nands-o
istry, de
nce the | -
oply the
tuation
in exper
emonst | theore
s encourience in
rating the | -
tical co
intered
n identi
he abili | -
ncepts
during
fying ar
ty to an
collabo | and pri
the into
nd solvi
alyze, to | -
nciples le
ernship.
ng practi
roublesh | 3 - earned in cal probl oot, and interaction | their ac | 3 3 ademic evant to tent solut colleague | 2
2
heir
ions. | | | 44102 | Tol | CO3
CO4
CO5
CO1
CO2 | The in course The in field of the in super inform | atern wi
ework to
tern wi
of study
extern wi
visors, a
nation. | 3
-
II be ab
o real-v
II gain h
or indu
II enha | -
le to ap
world sinands-oustry, de
nce the
nts, cor | -
oply the
tuation
on exper
emonst
ir comm | theore
s encou
rience in
rating the
nunicating effect | tical co
intered
n identi
he abili
ion and | -
ncepts
during
fying ar
ty to an
collabo
o team | and pri
the into
nd solvi
alyze, t
pration
project | -
nciples le
ernship.
ng practi
roublesh
skills by
s and cle | arned in cal probloot, and interactinally converse | their ace | 3
3
ademic
evant to t
ent solut
colleague
eas and | heir ions. | | | 0PR4102 | Tol | CO3
CO4
CO5
CO1 | The in course The in field of The in superinform | atern wi
ework to
tern wi
of study
otern wi
visors, a
nation. | 3 II be ab o real-v II gain h or indu II enhan and clie | -
ole to approved a
vorld simulation of the
nands-oustry, de
nce the
nts, cor | -
oply the
tuation
in exper
emonst
ir comm
ntribution | theore is encourience in rating the nunicating effect | -
tical co
intered
n identi
he abili
ion and
tively t | -
ncepts
during
fying ar
ty to an
collabo
o team
bility in | and pri
the into
nd solvi
alyze, t
pration
project | -
nciples le
ernship.
ng practi
roublesh
skills by
s and cle | arned in cal probloot, and interactinarly convanging w | their actions release implementation of the control | 3 3 ademic evant to tent solut colleague | heir ions. | | | 20PR4102 | Tol | CO3
CO4
CO5
CO1
CO2
CO3 | The in course The in field of the in superinforn The in tasks, | atern wi
ework to
tern wi
of study
atern wi
visors, a
nation. | 3 - II be ab o real-v II gain h or indu II enhal and clie II demo | -
le to ap
world sinands-oustry, de
nce the
nts, cor | oply the tuation experience of the comment in comment in the comme | theore s encourience in rating the nunicating effects ability a showcas | tical co
intered
n identi
he abili
ion and
ctively t | ncepts during fying an ty to an collabo o team bility in | and pri
the into
nd solvi
alyze, to
pration
project
dealing
to lear | nciples le
ernship.
ng practi
roublesh
skills by
s and cle
g with ch | arned in cal probloot, and interaction arly converse was quick | - 1 their access relations relations with a verying idealy. | 3
3
ademic
evant to t
ent solut
colleague
eas and | heir ions. | | | 20PR4102 | Tol | CO3
CO4
CO5
CO1
CO2 | The in course The in field of The in super inforn The in tasks, | attern wi
ework to
tern wi
of study
attern wi
visors, a
nation.
attern wi
and un | 3 - II be aboo real-v II gain h or indu II enhal and clie II demo | le to apworld sinands-oustry, dence the onstrate | oply the tuation experemental ir communitation experience adaptation adaptati | theore s encou rience in rating the nunicat nunicat ability a showcas erstance | tical co
intered
n identi
he abili
ion and
ctively t
nd flexi
sing the | ncepts during fying ar ty to an collabo o team bility in ability professi | and pri
the intend solvi
alyze, to
pration
project
dealing
to lear
onal et | nciples le
ernship.
ng practi
roublesh
skills by
s and cle
g with ch
n and adj
hics, wor | arned in cal probloot, and interactinally converse anging we ust quick kplace e | their actions released implements with coveying ideased to the idease | 3
3
ademic
evant to t
ent solut
colleague
eas and | heir ions. | | | 20PR4102 | Tol | CO3
CO4
CO5
CO1
CO2
CO3 | The in course The in field of The in super inforn The in tasks, | attern wi
ework to
tern wi
of study
attern wi
visors, a
nation.
attern wi
and un | 3 - II be aboo real-v II gain h or indu II enhal and clie II demo | le to apworld sinands-oustry, dence the onstrate | oply the tuation experemental ir communitation experience adaptation adaptati | theore s encou rience in rating the nunicat nunicat ability a showcas erstance | tical co
intered
n identi
he abili
ion and
ctively t
nd flexi
sing the | ncepts during fying ar ty to an collabo o team bility in ability professi | and pri
the intend solvi
alyze, to
pration
project
dealing
to lear
onal et | nciples le
ernship.
ng practi
roublesh
skills by
s and cle
g with ch | arned in cal probloot, and interactinally converse anging we ust quick kplace e | their actions released implements with coveying ideased to the idease | 3
3
ademic
evant to t
ent solut
colleague
eas and | heir ions. | | | 20PR4102 | Industrial/Research Internship | CO3
CO4
CO5
CO1
CO2
CO3 | The in course The in field of the in superinforn The in tasks, The in impor | attern with tern | 3 - II be ab o real-v II gain h or indu II enha and clie II demo foresee II exhib f adher | le to apyorld sinands-oustry, dence the onstrate en challe it a stro-ing to i | oply the tuation experience adaptate enges, song und | theore s encourience in nunicating effectability a showcaserstance r-specific | tical co
intered
n identi
he abili
ion and
ctively t
nd flexi
sing the
ling of p | ncepts during fying and collaboro team bility in elability profession of con | and pri
the into
nd solvi
alyze, to
ration
project
dealing
to lear
onal et
duct du | nciples le
ernship.
ng practi
roublesh
skills by
s and cle
g with ch
n and adj
hics, wor
ring thei | arned in cal problem oot, and interaction arly converse was quick kplace errinterns | ems reletimplements with a verying id vork envicely. | ademic evant to tent solut colleague eas and ronment and the | heir ions. | | | 20PR4102 | Tol | CO3
CO4
CO5
CO1
CO2
CO3 | The in course The in field of The in super inform The in tasks, The in impor | attern witern wi | 3 III be aboo real-vill gain hor indu III enhaland clie III demo | le to apworld sinands-oustry, dence the onstrate | oply the tuation experemental ir communitation experience adaptation adaptati | theore s encou rience in rating the nunicat nunicat ability a showcas erstance | tical co
intered
n identi
he abili
ion and
ctively t
nd flexi
sing the | ncepts during fying ar ty to an collabo o team bility in ability professi | and pri
the intend solvi
alyze, to
pration
project
dealing
to lear
onal et | nciples le
ernship.
ng practi
roublesh
skills by
s and cle
g with ch
n and adj
hics, wor | arned in cal probloot, and interactinally converse anging we ust quick kplace e | their actions released implements with coveying ideased to the idease | ademic evant to tent solut colleague eas and ronment and the | heir ions. | | | 20PR4102 | Tol | CO3
CO4
CO5
CO1
CO2
CO3 | The in course The in field of the in superinforn The in tasks, The in impor | attern with tern | 3 - II be ab o real-v II gain h or indu II enha and clie II demo foresee II exhib f adher | le to apyorld sinands-oustry, dence the
onstrate en challe it a stro-ing to i | oply the tuation experience adaptate enges, song und | theore s encourience in nunicating effectability a showcaserstance r-specific | tical co
intered
n identi
he abili
ion and
ctively t
nd flexi
sing the
ling of p | rcepts during fying an ty to an collabo o team bility in ability professi of con | and pri
the into
nd solvi
alyze, to
ration
project
dealing
to lear
onal et
duct du | nciples le
ernship.
ng practi
roublesh
skills by
s and cle
g with ch
n and adj
hics, wor
ring thei | arned in cal problem oot, and interaction arly converse was quick kplace errinterns | ems reletimplements with a verying id vork envicely. | ademic evant to tent solut colleague eas and ronment and the | heir ions. | | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | CO3 | - | - | - | _ | - | - | - | _ | 3 | 3 | 2 | - | 2 | 2 | |--------|-----|---------|----------|----------|----------|----------|----------|----------------|----------|----------|-----------|------------|----------|-----------|--------| | | CO4 | - | - | - | - | - | 2 | - | - | - | - | 2 | 3 | 2 | 2 | | | CO5 | - | - | - | - | - | 2 | - | 3 | 3 | - | - | - | 2 | 2 | | | | | | | | | I | V-II | | | | | | | | | | CO1 | Unde | rstand t | he adva | anced to | echnolo | ogy and | resear | ch in En | gineeri | ng | | | | | | | CO2 | Collab | orate v | vith tea | m men | nbers in | analyz | ing the | require | ements | of the pr | oject to l | be devel | oped. | | | | CO3 | Build | necessa | ary desi | gn spec | ificatio | ns and | docume | ents for | the cho | sen proj | ect | | | | | | CO4 | Devel | op apt o | domain | and ted | chnical | knowle | dge to i | implem | ent/cod | de the ap | plication | and dep | loy the p | roject | | roject | | after i | mplem | entatio | n | | | | | | | | | | | | īō | CO5 | Demo | nstrate | the pro | oject co | mpreh | ensively | with n | ecessaı | ry tools | | | | | | | r P | | | | | | | | | | | | | | | | | Мајо | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | Σ | CO1 | 3 | - | - | _ | - | - | - | - | - | - 1 | - | 3 | 2 | 2 | | | CO2 | 2 | - | 2 | - | 3 | - | - | - | 3 | 3 | 3 | 3 | 2 | 3 | | | CO3 | 1 | - | 3 | 3 | 3 | - | - | - | - | - | - | 3 | 2 | 3 | | | CO4 | 2 | - | 3 | 3 | 2 | - | - | 2 | - | - | - | 3 | 2 | 2 | | | CO5 | - | - | - | - | - | - | - | 3 | - | 3 | - | 3 | 2 | 2 |