DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING | | | | | | | | CO-P | O-PSO | GRANI | D MAT | RIX | | | | | | |-------|------------------------|-----------------|---------|----------|------------|----------------|---------------|----------------------|------------|-----------------|-----------|------------|-----------|-------------|------------|----------| | Ву | the e | end of e | each co | urse st | udent | will be | able to |
ว | | | | | | | | | | | | | | | | | | | I-I | | | | | | | | | | | CO1 | Solve | the diff | ferentia | l equati | ions rela | ated to | various | engine | ering fie | elds | | | | | | | | CO2 | | | | heorem | | | | | | | | | | | | | | CO3 | | | | | | | | | | optimiz | | | | | | | - | CO4 | Apply | double | integra | ation te | chnique | s in eva | luating | areas b | oundec | l by regio | on. | | | _ | | | _ S: | CO5 | Learn | importa | ant tool | s of cal | culus ir | ı higher | dimen | sions. S | Students | will bec | ome fam | iliar with | n 2-dimen | sional | | 01 | Mathematics | | and 3 | – dimei | nsional | coordin | nate sys | tems. | | | | | | | | | | BS01 | em | | DO1 | DOA | DO2 | T DO 4 | DO5 | DOC | DO7 | DO0 | DO0 | DO10 | DO11 | DO12 | DCO1 | DCO2 | | | ath | CO1 | PO1 | PO2 2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | Ž | CO1 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO ₂ | 3 | 2 | - | - | _ | - | - | - | <u> </u> | - | - | 1 | - | - | | | | CO4 | 3 | 2 | | _ | _ | _ | - | _ | | _ | _ | 1 | _ | _ | | | | CO ₅ | 3 | 2 | | | | _ | _ | | | _ | _ | 1 | _ | _ | | | | 003 | | _ | | | | | | | | | | * | | | | | | CO1 | Under | rstand t | he nrind | cinles s | uch as i | nterfere | ence and | d diffrac | ction to | design a | nd enhan | ce the re | solving p | ower | | | | CO1 | | | | strumer | | 111011010 | Aice air | u umm. | otion to | design | na cina. | 100 1110 12 | 301,1119 L | 70 11 61 | | | | CO2 | | | | | | R light S | Sources | and Ar | oply the | m to hole | ography | | | | | | | CO3 | | | | _ | | | | | | | ts of mat | terials. | | | | | | CO4 | | | | ital cond | | | | | | | - | - | | | | | sics | CO5 | | | | semicor | - | | | | | | | | | | | 2 | hy | | | , | <i>/</i> 1 | | | | | | | | | | | | | BS02 | ed F | | PO1 | РО | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | - | Applied Physics | | | 2 | | | | | | | | | | | | | | | Ą | CO1 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO2 | 3 | 2 | • | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO3 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO4 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO5 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | | 1 | | | | | | | | 1 | | • | • | | | | | | CO1 | identi | fy the c | ontext, | topic, a | and piec | es of sr | ecific i | nforma | tion fro | m social | or transa | ctional d | lialogues | | | | | | spoke | n by na | tive spe | eakers c | of Engli | sh (L3) | | | | | | | C | | | | | CO2 | formu | late ser | ntences | using p | roper g | rammat | ical str | uctures | and cor | rect wor | d forms (| (L3) | | | | | _ | CO3 | speak | clearly | on a sp | ecific to | opic usi | ng suita | ble dis | course i | marker | s in infor | mal discu | ussions (l | _3) | | | | lish | CO4 | write | summa | ries ba | sed on § | global c | ompreh | nension | of reac | ding/list | ening te | xts (L3) | | | | | 101 | English | CO5 | produ | ce a col | herent | paragra | ph inte | rpretin | g a figu | re/grap | h/chart | table (L | .4) | | | | | HSM01 | | CO6 | take n | otes wl | hile list | ening to | o a talk/ | [/] lecture | to ans | wer que | estions | (L3) | | | | | | _ | ativ | | | | | | | | | | | | | | | | | | Communicative | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | mu | CO1 | - | - | - | - | - | - | - | - | 2 | 3 | - | 1 | - | - | | | mo | CO2 | - | - | - | - | - | - | - | - | 2 | 3 | - | 1 | - | - | | | ŏ | CO3 | - | - | - | - | - | _ | - | - | 2 | 3 | - | 1 | - | - | **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | CO4 | _ | _ | _ | _ | _ | _ | _ | _ | 2 | 3 | - | 1 | _ | - | |--------|---------------------------------------|---|--------|-----------------------|----------|------------|----------|-----------|----------------------|----------|-----------|-----------|-----------|------------|------------|---------| | | | CO5 | - | - | - | - | - | - | - | - | 2 | 3 | - | 1 | - | - | | | | CO6 | - | - | - | - | - | - | - | - | 2 | 3 | - | 1 | - | - | | | İ | <u> </u> | I | 1 | <u>I</u> | 1 | 1 | <u>I</u> | <u>I</u> | <u>I</u> | <u>I</u> | | <u>I</u> | _1 | 1 | I | | | ပ | CO1 | Under | rstand a | lgorithi | ns and | basic te | rminolo | ogy of C | 7 | | | | | | | | | ing | CO2 | | problei | | | | | | | roach | | | | | | | | g us | CO3 | Make | use of | 1D and | 2D arra | ys alon | g with | strings | for line | ar data | handling | | | | | | | Ni | CO4 | | mine th | | | - | _ | | | | <u>~</u> | | | | | | | n So | CO5 | Imple | ment va | arious c | peratio | ons on c | lata file | S | | | | | | | | |)1 | plen | | - | | | - | | | | | | | | | | | | ES01 | Pro | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | for | CO1 | 1 | 2 | 3 | 2 | 1 | - | - | - | 3 | 3 | 1 | 2 | 1 | 2 | | | ing | CO2 | 2 | 3 | 3 | 2 | - | - | - | - | 1 | 1 | 2 | 2 | 2 | 2 | | | mm | CO3 | 3 | 3 | 3 | 2 | - | - | - | - | 2 | 1 | 2 | 2 | 2 | 3 | | | Programming for Problem Solving using | CO4 | 2 | 2 | 2 | 2 | - | - | - | - | 2 | 1 | 2 | 2 | 2 | 2 | | | Prc | CO5 | 2 | 2 | 2 | 2 | - | - | - | - | 2 | 1 | 2 | 2 | 1 | 2 | | | | 1 | L | | l . | 1 | 1 | 1 | 1 | 1 | l . | 1 | 1 | 1 | | 1 | | | | CO1 | Prepa | re engii | neering | drawin | gs as pe | er BIS c | convent | ions {U | ndersta | nd level, | KL2} | | | | | | | CO2 | | | | | | | | | | | | ces using | CAD so | ftware | | | gn | CO2 Produce computer generated of orthographic projections of Lines and Plane surfaces using CAD software | | | | | | | | | | | | | | | | | Design | CO3 | Use th | ne know | /ledge o | of ortho | graphic | projec | tions o | f Solids | to repr | esent en | gineerin | g informរ | ation/con | cepts | | | Qρ | | and p | resent t | he sam | e in the | e form o | of draw | ings {A _l | ply lev | el, KL3} | | | | | | | | and | CO4 | Use th | ne knov | vledge | of section | onal vie | ws and | Develo | pment | of Solid | l Surface | s in Real | time Ap | plications | {Apply | | 7 | ics | | level, | KL3} | | | | | | | | | | | | | | ES02 | Graphics | CO5 | | • | | _ | of sim | ple obje | ects rea | ding the | e ortho | graphic p | rojectio | ns of tho | se | | | | Ğ | | | ts{Analy | | | 1 | 1 | ı | 1 | 1 | | ı | | | ı | | | Engineering | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | eel | CO1 | 2 | 1 | 1 | - | 3 | - | - | - | - | 2 | - | 1 | - | - | | | gin | CO2 | 2 | 1 | 1 | - | 3 | - | - | - | - | 2 | - | 1 | - | - | | | E | CO3 | 2 | 2 | 2 | - | 3 | - | - | - | - | 2 | - | 1 | - | - | | | | CO4 | 2 | 2 | 2 | - | 3 | - | - | - | - | 2 | - | 1 | - | - | | | | CO5 | 2 | 2 | 2 | - | 3 | - | - | - | - | 2 | - | 1 | - | - | | | | | | | | | | | | | | | | | 1. 1 | | | | | CO1 | | | | | | | | | | | | | lialogues | | | | - | | | en by na
ers in in | | | | | speak c | еагіу о | ıı a spec | inc topi | using s | uitable d | iscourse | | | | Lat | CO2 | | | | | ` | | to ana | ver and | etione i | n English | r formul | ate cento | nces usin | σ | | | İsh | CO2 | | | | | | | | | | | | ely in cor | | 5 | | ا بــ | lgu | | | inations | | Juanu | . Jo unu | 2011000 | ,, 51 G IV | , u | 450 1 | 550 | 211001170 | , 111 001 | pourivo | | | HSM01L | Communicative English Lab-I | CO3 | | | | sed on | global c | omprel | nension | of read | ding/list | tening te | xts; proc | luce a co | herent w | rite-up | | 1SI | ativ | | | | | - | _ | | | | _ | _ | | | unication | | | - | nic | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | mu | CO1 | - | - | - | - | - | - | - | - | 2 | 3 | - | 1 | - | - | | | E C | CO2 | - | - | - | - | - | - | - | - | 2 | 3 | - | 1 | - | - | | | ŭ | CO3 | - | - | - | - | - | - | _ | _ | 2 | 3 | _ | 1 | | _ | | | | | | | | | | | | | _ | | | | | | | | | | | | | | | | | | | , | | | | | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | CO1 | Comm | mahan d | the we | rione e | onconto | of o | longra | 0.00 | | | | | | | |-------|---------------------------------------|---|---|----------|----------|----------|---------|-----------|----------|---------|----------|-----------|------|------|------|------| | | 3 C | CO1 | | | | | | of a C | iangua | ige | | | | | | | | | Jaing | CO2 | | lop algo | | | | | a 1 | a1.:11a | | | | | | | | | ing (| CO3 | | | | | | oblem s | oiving | SKIIIS. | | | | | | | | | Programming for Problem Solving using | CO4 | Acqu | ire mod | lular pı | rogramı | ming sl | xills. | | | | | | | | | | 11 | olem | | | | | | | | | | | | | | | | | ES01L | Prol | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | g for | CO1 | 1 | 2 | 3 | 2 | 1 | - | - | - | 3 | 3 | 1 | 2 | 1 | 2 | | | nmin | CO2 | 2 | 3 | 3 | 2 | - | - | - | - | 1 | 1 | 2 | 2 | 2 | 2 | | | ograr | CO3 | 3 | 3 | 3 | 2 | - | - | - | - | 2 | 1 | 2 | 2 | 2 | 3 | | | Pr | CO4 | 2 | 2 | 2 | 2 | - | - | - | - | 2 | 1 | 2 | 2 | 2 | 2 | CO1 | Apply | y know | ledge o | f Interf | ference | concep | ts of li | ght(L3) |) | | | | | | | | | CO2 | Apply knowledge of Interference
concepts of light(L3)* repeated Infer the applications of Lasers(L2) | | | | | | | | | | | | | | | | | CO3 | | | | | | | | | | | | | | | | | Lab | CO4 Define Acoustics of buildings and NDT applications (L1) | | | | | | | | | | | | | | | | | Applied Physics | CO5 | Defin | e mate | rial pro | perties | and n | uclear p | ower g | generat | tion(L1 |) | | | | | | BS02L | hys | | 1 | | T | 1 | | | 1 | ı | ı | T | | | 1 | | | BS | D P | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | plie | CO1 | 3 | 3 | 3 | 2 | 2 | - | - | - | - | - | - | - | - | - | | | Ар | CO2 | 2 | 2 | 2 | 3 | 2 | - | - | - | - | - | - | - | - | - | | | | CO3 | 3 | 2 | 2 | 2 | 3 | - | - | - | - | - | - | - | - | - | | | | CO4 | 2 | 2 | 3 | 3 | 3 | - | - | - | - | - | - | - | - | - | | | | CO5 | 3 | 2 | 3 | 2 | 2 | - | - | - | - | - | - | - | - | - | | | | CO1 | Know | the so | urces | features | s and n | rinciple | s of In | dian C | onstitut | ion | | | | | | | | CO2 | | | | | | | | | | ministrat | ion | | | | | | <u>i</u> | CO3 | | | | | | istration | | | | ut | 2011 | | | | | | Ind | CO4 | | | | | | levelopi | | | | nts. | | | | | | 1 | ution of India | CO5 | | | | | | ctioning | | | | | | | | | | MC01 | ion | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | Σ | | CO1 | 3 | - | 3 | - | - | 3 | - | 2 | 3 | - | 3 | 2 | - | - | | | Constit | CO2 | 2 | - | 2 | - | - | 2 | - | 2 | 2 | - | 3 | 2 | - | - | | | S | CO3 | 3 | - | 3 | - | - | 2 | - | 2 | 2 | - | 3 | 3 | - | - | | | | CO4 | 2 | - | 3 | - | - | 2 | - | 2 | 2 | - | 3 | 3 | - | - | | | | CO5 | 3 | - | 1 | - | - | 3 | - | 3 | 3 | - | 3 | 2 | - | - | | 1 | | | | | | | | | | | | | | | | | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | | | | | | | | 1 11 | | | | 7 | | | | |------|-------------------|-----|--------|--------------------|---------------------|----------|----------|------------------|-------------|----------|----------|------------|-----------|------------|-------------------------|--------| | | 1 | 1 | 1 | | | | | | <u> - </u> | | | | | | | | | | | CO1 | (EVA | LUAT | E) | | | | | | | • | | | algorith | | | | | CO2 | and b | | d interp | | | | | | | Gauss Sei | | | wton's fo
LVE , | orward | | | - S | CO3 | analyt | | _ | | | | _ | | | • | | • | ons to its
ons (SOL\ | | | 33 | atic | CO4 | Find o | r comp | ute the | Fourie | r series | of perio | odic sig | nals (SC | OLVE ,A | PPLY, FIN | ID, ANAL | YSE) | | | | BS03 | Mathematics | CO5 | | | | | _ | expres
, APPL | | | orwards | and inv | erse Fou | rier trans | form to I | range | | | 2 | | DO1 | DO2 | DO2 | DO4 | DOE | DOG | DO7 | DOS | DOO | DO10 | DO11 | DO12 | DCO1 | DCO2 | | | | 601 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | CO1 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | | - | | | | CO2 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO3 | | | - | - | - | - | - | - | - | - | - | 1 | | - | | | | CO4 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO5 | 3 | | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | | 1 1 1 | | | | | | | | | | <u> </u> | | | (T. 6) | | | | CO1 | | | | | | | | | | | | | ications (| (L6) | | | | CO2 | | | | | | | | | | on, Gaus | | | | | | | | CO3 | | | | | | | | | | gradient | | | ence (L5) | | | | ₹ | CO4 | | | | | | | | | | g vector | | | | | | | ics | CO5 | identi | fy the s | olution | metho | ds for p | artial d | itterent | ial equ | ation th | at mode | I physica | ll process | es (L3) | | | BS04 | Mathematics –III | | 1 | | | | | | | | | | | 1 2 2 4 2 | | | | В | her | 604 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | 1at | CO1 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | 2 | CO2 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO3 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO4 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | - | | | | CO5 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | | - | | | | CO1 | _ | _ | reparati
olymers | • | perties | and app | lication | s of the | ermopla | stics, the | ermosetti | ngs, elas | tomers a | nd | | | | CO2 | know | the imp | ortance | e of var | ious ma | aterials | and the | ir uses | in the c | onstructi | on of bat | teries an | d fuel cel | lls. | | | 7 | CO3 | know | the app | olication | ns of ad | lvanced | materi | als in v | arious i | ndustri | es | | | | | | ស | Applied Chemistry | CO4 | | y the pr
chemis | | of sup | ramole | cular ch | emistr | y in the | applica | itions of | molecula | ar machir | nes, need | of | | BS05 | つに | CO5 | explai | n the p | rinciple | s of spe | ectrome | etry suc | h as UV | , IR, an | d NMR | | | | | | | | liec | | | , | | | _ | | | | | | | | | | | | ddγ | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | 4 | CO1 | 2 | 2 | - | - | - | - | 3 | - | - | - | - | - | - | - | | | | CO2 | 2 | 2 | - | - | - | - | 2 | - | - | - | - | - | - | - | | | | CO3 | 2 | 2 | | | | | 2 | | | | | | | | #### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | CO4 | 2 | 2 | _ | _ | _ | _ | 3 | I _ | _ | I _ | _ | _ | _ | _ | |----------|------------------------------|--|--------|---------|----------|-------------|------------|----------------|----------|--|----------|-----------|--|------------|--------------|--------------| | | | CO5 | 2 | 2 | _ | _ | - | _ | 3 | - | _ | _ | - | _ | - | _ | | | | CO1 | | | rstand t | he conc | rents of | electric | | l
iits and | verify 1 | theorems | in DC c | ircuits | | | | | | CO2 | | | | | | of single | | | | theorems | швес | neurs. | | | | | ₽0 | CO3 | | | | | | plicatio | | | | | | | | | | | ri | CO4 | | | | | | of single | | | | | | | | | | | nee | CO5 | | | | | | nd appl | | | | | | | | | | | Basic Electrical Engineering | CO3 | . Able | to unu | erstariu | the wo | JI KIIIB a | пи аррі | ication | S OI AC | macmi | ies. | | | | | | ES03 | 三 | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | ES | rica | CO1 | 3 | 2 | - | - | - | - | - | - | - | - | - | 1 | - | F3U2 | | | ect | CO2 | 3 | 2 | _ | _ | | _ | | _ | _ | _ | | | | | | | CEI | CO3 | 3 | _ | _ | _ | - | _ | | _ | _ | _ | | 1 | | | | | asi | CO4 | 3 | 2 | _ | _ | - | | - | | _ | _ | | - | | - | | | 8 | CO5 | 3 | | _ | _ | | - | | | - | _ | - | | - | - | | | | CO3 | 3 | 2 | _ | _ | - | - | _ | - | - | _ | - | 1 | - | - | | | | CO1 | | l . | oriene : | -
noroti | no on 1 | -
incom 15: | to. | | - | _ | | 1 | | | | | | CO1 | _ | | | • | | inear lis | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ov.=1 | ing some | lov data | atmr at | NG. | | | | | CO2 | | | | | | | | | | ing comp | | structure | 3. | | | | | CO3 | | | | | | | | - | | structure | | مممد عامد | | | | | res | CO4 | | | | | | | | | | trees, bi | nary sea | rcn trees | • | | | - | ct | CO5 Identify appropriate data structure algorithms for graphs | | | | | | | | | | | | | | | | ES04 | tr | | DO1 | DO2 | DO2 | DO 4 | DOE | DOC | DO7 | DO0 | D00 | DO10 | DO11 | DO13 | DC 04 | DCO2 | | Ш | a S | CO5 Identify appropriate data structure algorithms for graphs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 | | | | | | | | | | | | | | | | | Dat | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02 CO1 2 2 1 - - - - - - 1 1 CO2 1 2 2 - - - - - - 2 1 | | | | | | | | | | | | | | | | | _ | CO1 2 2 1 1 1
CO2 1 2 2 2 1 | | | | | | | | | | | | | | | | | | CO3 | 2 | - | 2 | 2 | - | - | - | - | - | - | - | - | 2 | 1 | | | | | | - | 2 | 1 | - | - | - | - | - | - | - | - | 1 | 1 | | | | CO5 | Λ - 1- | 2 | 1 | 2 | in root | - Lord - | nnliaati | one (T | 2) | _ | - | - | 1 | 1 | | | | CO1 | | | | _ | | world a | | | | (I 2) | | | | | | | | CO2 | | | | | | ets in r | | | cations | . (L3) | | | | | | | orkshop | CO3 | | | | | | applicat | | | (1.2) | | | | | | | | rksl | CO4 | | | | | | ric circu | iit conn | ections | . (L3) | | | | | | | ب | | CO5 | Demo | nstrate | solderi | ng and | brazing | 3. (LZ) | | | | | | | | | | ES05L |) gr | | PO1 | DO2 | DO2 | DO 4 | DOE | DOC | DO7 | DO0 | DOO | DO10 | DO11 | DO12 | DCO1 | DCO2 | | Ľ | erii | CO1 | | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | Engineering W | CO1 | 2 | 2 | - | - | - | - | - | - | - | - | - | 1 1 | - | - | | | gu: | CO2 | 2 | 2 | | - | - | - | | | _ | _ | | 1 | - | - | | | | CO3 | 2 | 2 | | | | | - | <u> </u> | - | - | - | 1 | - | - | | | | CO5 | 2 | 2 | - | - | - | - | - | - | - | - | | 1 | - | - | | | | CO1 | | | | | netal in | ne proce | ent in A | ifferent | colutio | ns (L4 & | . I 3 | _ <u> </u> | | | | | Lab | CO2 | | | | | | of water | | mereill | solutio | 115 (L4 & | LS | | | | | | stry | CO3 | | | | • • | | | | N using | diffor | nt inctru | ımantati | on techn | iques (L3 | 1 | | | | CUS | 10 000 | CHIIIIE | | | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | emi | | DO1 | DO3 | DO⊃ | 1 10/1/1 | | | / | 10 | | | | | | | | BS051 | Chemi | CO1 | PO1 | PO2 | PO3 | PO4 | | | | | | + | | | | | | BSC | lied Chemi | CO1 | - | 3 | 2 | - | - | - | - | 1 | 2 | - | - | 2 | - | - | | BSC | Applied Chemistry Lab | CO1
CO2
CO3 | | | | | | | | | | + | | | | | ### **DEPARTMENT OF ELECTRONICS &
COMMUNICATION ENGINEERING** | | | CO1 | A 1. 1 . | 40.001 | | | 1_ 1 | 1 . ' | 1 . | 4min s 1 1 | 1 | | 41 | | | | |-------|----------------------------------|--|----------|--------------------|-----------|----------|-----------|-----------------------|-----------|-------------|----------|------------|-----------|------------|-----------|-------| | | | CO1 | | | | | | | | | | network | theorem | ıS. | | | | | ð | CO2 | | | | _ | | | | | | itations. | | | | | | | Le | CO3 | Able t | o analy | ze the p | perform | nance c | haracte | ristics c | of DC m | achines | 5 | | | | | | | ing | CO4 | Able t | o meas | ure and | calcul | ate the | perforn | nance c | haracte | eristics | of 1-phas | se Transf | ormer | | | | | ē | CO5 | | | | | | haracte | | | | • | | | | | | | ine | | 71010 | o arrary | 30 1110 1 | 20110111 | iarree er | i ai accc | 1136163 6 | 71 710 1111 | acimics | <u>'•</u> | | | | | | ES03L | Basic Electrical Engineering Lab | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | ES | g | CO1 | 3 | 2 | _ | _ | - | _ | _ | _ | - | _ | _ | 1 | _ | _ | | | tri | CO2 | 3 | 2 | _ | _ | - | - | - | _ | _ | _ | _ | _ | _ | _ | | | lec | CO3 | 3 | | _ | _ | | - | _ | _ | _ | | | 1 | | | | | ic E | | | - | - | - | - | - | _ | | - | - | - | 1 | - | - | | | asi | CO4 | 3 | 2 | - | - | - | - | - | - | - | - | - | - | - | - | | | В | CO5 | 3 | - | - | - | - | - | - | - | - | - | - | 1 | - | - | CO1 | _ | | | | | the bas | | | | | | | | | | | | CO2 Design and analyze the time efficiency of the data structure. | | | | | | | | | | | | | | | | | _ | CO3 Design and analyzethe Space efficiency of the data structure in the memory. | | | | | | | | | | | | | | · | | | ab- | CO4 Identifies the appropriate data structure for given problem. | | | | | | | | | | | | | | | | | es l | CO5 Compare and Contrast various data structures and design techniques in the area of Performance. | | | | | | | | | | | | | | | | 1 | tur | | | | | | | | | | | | | | | | | ES04L | nc | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | Ш | Str | CO1 | 2 | 2 | 1 | 1 | - | - | - | - | - | - | - | - | - | - | | | ıta | CO2 | 2 | 2 | 1 | 1 | | | _ | | | _ | | | _ | | | | Dê | | | | | | - | - | - | - | - | - | - | - | | - | | | | CO3 | 2 | 2 | 1 | 1 | - | - | - | - | - | - | - | - | - | - | | | | CO4 | 2 | 2 | 1 | 1 | - | - | - | - | - | - | - | 1 | - | - | | | | CO5 | 2 | 2 | 1 | 1 | <u> </u> | - | - | | <u> </u> | | <u> </u> | 1 | | - | | | | CO1 | | | | | | | | | | and usef | ul points | and para | aphrase s | hort | | | _ | | | | | | | egies an | | | | ND/TE 1: 1 | *.1 | 1 . | 1 . 1 | | | | English Lab-II | CO2 | | formal
ents (L3 | | red pres | sentatio | ns on a | cademic | e topics | using I | PPT slide | s with re | elevant gi | raphical | | | | La | CO2 | | | , | disauss | ionsus | ing ann | consist | | ntions | and langu | iago stra | togios /I | 21 | | | | lish | CO3 | | | | | | | | | | and langu | iage stra | tegies (L | 3) | | | 77 | ng | CO4 | | | | | | seek in | | | | | _, | | | | | HSM02 | e e | CO5 | collab | orate w | ith a pa | artner t | o make | presen | tations | and Pr | oject R | eports (L | 2) | | | | | 1SI | ıtiv | | | ı | I | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | 1 | T | | | ice | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | Communicativ | CO1 | - | - | - | - | - | - | - | - | 2 | 3 | - | 1 | - | - | | | E I | CO2 | - | - | - | - | - | - | - | - | 2 | 3 | - | 1 | - | - | | | ၂ ၁ | CO3 | - | - | - | - | - | - | - | - | 2 | 3 | - | 1 | - | - | | | | CO4 | _ | - | | - | - | - | | | 2 | 3 | - | 1 | - | - | | | | CO5 | - | - | - | - | - | - | - | - | 2 | 3 | - | 1 | - | - | | | · · | | | | | | | | | | | | | | | | | | | CO1 | | | | - | | o syste | | | | | | | | | | | | CO2 | Unde | rstand 1 | the nat | ural res | ources | and the | ir impo | rtance | | | | | | | | 7 | 1 | CO3 | Able t | to learn | the Bio | diversi | | | | | | | apply co | onservat | ion pract | ices. | | 9 | S | | | | | | | | | | | | | | | | | MC0 | ES | CO4 | | to learn | | rious at | tribute | s of the | polluti | on and | their in | npacts | | | | | | MC02 | ES | CO4
CO5 | Able t | to learn | the va | | | s of the
Il and ui | | | | npacts | | | | | | MCO | ES | | Able t | | the va | | | | | | | npacts | | | | | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |------|---|-----|--------|-----------|---------|-----------|-----------|-----------|-------------|----------|----------|-----------|------------|------------|-------------|-------| | | | CO1 | 3 | - | 3 | - | 2 | - | 3 | - | 3 | - | 3 | 2 | - | - | | | | CO2 | 2 | - | 2 | | 2 | _ | 3 | _ | 2 | _ | 3 | 2 | _ | _ | | | | CO3 | 3 | - | 3 | _ | 2 | _ | 3 | _ | 2 | _ | 3 | 3 | _ | _ | | | | CO4 | 2 | _ | 3 | _ | 2 | _ | 3 | _ | 2 | _ | 3 | 3 | _ | _ | | | | CO5 | 3 | - | 1 | - | 3 | _ | 3 | _ | 3 | _ | 3 | 2 | _ | - | | | | CO3 | 3 | | Т. | | 3 | | 1 | _ | | _ | J | | _ | _ | | | | | | | | | | | II-I | | | | | | | | | | | CO1 | | • | | • | | plex fu | nction i | n order | to dete | rmine wh | nether a g | given cor | ntinuous | | | | ods | | | ion is ar | | | | | | | | | | | | | | | eth | CO2 | | | | | | | | | | gineering | problem | is and ma | ake use of | f | | | Σ | | | hy resid | | | | | | | | | _ | | | | | | tica | CO3 | | | | ious pro | obabilit | y distril | outions | and de | sign the | e compoi | nents of | a classica | al hypoth | esis | | | ıtisı | | | Apply&0 | | | | | | | | | | | | | | 9 | Ste | CO4 | | | | | | | | | _ | pling tes | | | | | | BS06 | Complex Variables and Statistical Methods | CO5 | Interp | ret the | associa | ation of | charac | teristics | and th | rough (| correlat | ion and r | egressio | n tools.(| Analyze) | | | " | es ! | | Ι_ | Ι | Ι_ | T _ | Ι_ | I _ | Ι_ | Ι_ | 1 _ | Γ_ | Ι_ | Τ_ | T | | | | iab | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | Var | CO1 | - | 2 | - | - | - | - | - | - | - | - | - | - | - | - | | | ex | CO2 | - | 2 | - | - | - | - | - | - | - | - | - | - | - | - | | | mp | CO3 | 2 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | | | ဒ | CO4 | 1 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | | | | CO5 | 2 | 3 | - | - | - | - | - | - | - | - | - | - | - | - | | | | CO1 | | | | | | | | | | ons (Unde | erstand le | evel) | | | | | uits | CO2 | | onstrate | | | | | | | | | | | | | | | and Circuits | CO3 | | in the w | | | | | | | and lev | el) | | | | | | | ρ | CO4 | | the art | | | | | | | | | | | | | | | an | CO5 | | the equ | uivalen | t small | signal lo | ow freq | uency r | nodels | of BJTs | and FETS | in ampl | ifier ana | lysis (Ana | alyze | | EC01 | Devices | | level) | 1 | ı | 1 | | 1 | 1 | 1 | 1 | I | 1 | | 1 | 1 | | H | evi | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | C D | CO1 | - | 3 | - | - | - | - | - | - | - | - | - | - | - | 2 | | | tronic | CO2 | 2 | 2 | - | - | - | - | - | - | - | - | - | - | - | 2 | | | ctr | CO3 | - | 3 | - | - | - | - | - | - | - | - | - | - | - | 3 | | | Elec | CO4 | - | 3 | - | - | - | - | - | - | - | - | - | - | - | 2 | | | | CO5 | 2 | - | - | - | - | - | - | - | - | - | - | - | - | 2 | | | | CO1 | | | | | | | | | ignals n | nathemat | ically an | d able to | calculate | • | | | | | _ | lex Fou | | | | | | | | | | | | | | | SI | CO2 | | | | | | | | | | | | | and App | | | | ten | | | | | | | | me sigi | nals to | discrete | -time sig | nal and r | econstru | ct the orig | ginal | | | and Systems | 055 | | l from s | | | | | | | | | r . —. | | | | | EC02 |) pt | CO3 | | • | | | | | | | | • | | | erstand t | | | Ĕ | s ar | | | • | olution | i, correl | iation, e | energy s | pectra | aensit | y and p | ower spe | ectral dei | nsity. (Re | member | , | | | nal | 664 | | rstand) | 1 | | | -1 | | | 1 | | | | 1 . 1 | | | | Signals | CO4 | | • | | | | • | | us time | signals | and syst | ems and | underst | and the | | | | | 665 | | pt of re | | | | | | 1 | .1 | | | | | • | | | | CO5 | | | | | | | time sig | gnals an | id syste | ms, and i | understa | nd the co | oncept of | Ť | | | i | 1 | region | า of con | vergen | ce. (Co | mpute) | | | | | | | | | | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |------|-----------------------------------|-----|----------|-----------|-----------|----------|-------------|-----------|-----------|--------------|-----------|----------------------|------------|--------------|------------|----------| | | | CO1 | 3 | 3 | 2 | - | - | - | - | - | - | - | - | - | - | 3 | | | | CO2 | 3 | 3 | 2 | - | - | - | - | - | - | - | - | - | - | 3 | | | | CO3 | 3 | 2 | 3 | - | - | - | - | - | - | - | - | - | - | 3 | | | | CO4 | 3 | 2 | 2 | - | - | - | - | - | - | - | - | - | - | 3 | | | • | CO5 | 3 | 2 | 2 | - | - | - | - | - | - | - | - | - | - | 3 | | | | CO1 | Distin | guish t | he anal | og and | digital s | systems | , apply | positio | nal nota | ations, nu | mber sy | stems, co | mputer o | codes in | | | _ | | | l systen | | | | | | | | | | | | | | | Digital Circuits and Logic Design | CO2 | | | | | gebra tl | neorems | s, simpl | ify and | design | logic circ | cuits. (U | nderstand | d, Apply, | | | | Pe | 602 | | ze and | | <i>,</i> | | ! | | ا . ام م ماا | | la i .a a & i a .a . | -1 -:: | | | | | | gic | CO3 | | | | | _ | | _ | | | uate, and | | s using e | ncoders, | | | _ | d Lc | CO4 | | | | | | | | - | - | derstand, | | nalyze) | | | | EC03 | an | CO5 | | n and ar | | | | | | | | | дриу, г | anaryze) | | | | ш | lits | | PO1 |
PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | irc | CO1 | 3 | 2 | 2 | - | - | - | - | - | - | 1 | - | - | - | 3 | | | al C | CO2 | 3 | 2 | 2 | - | - | - | _ | - | - | 1 | _ | - | _ | 3 | | | igit | CO3 | 3 | 2 | 2 | - | - | _ | _ | - | _ | 1 | _ | - | _ | 3 | | | ۵ | CO4 | 3 | 2 | 2 | - | - | - | - | - | - | 1 | _ | - | _ | 3 | | | | CO5 | 3 | 2 | 2 | - | - | - | - | - | - | 1 | - | - | - | 3 | | | | CO1 | Apply | the me | esh and | node m | nethods | to analy | yze the | behavio | or of ele | ectrical ci | ircuits (F | RLC circ | uits)unde | r | | | | | steady | y state c | onditio | ns. (Ap | ply) | | | | | | | | | | | | S | CO2 | | | | | | | | | | | rameters | S(Z, Y, A) | ABCD, h | & g) | | | Li. | | | | | | | | | | | erstand) | | | | | | | ou | CO3 | | | ransien | it behav | vior of F | RLC circ | uits in (| detail us | sing tim | ne domai | n and s-d | domain r | nethods. | | | | issi | CO4 | (Analy | | i+h +ho | gonora | Loharae | torictic | c of tra | nemicei | on line | hy annly | uing the | hacic cire | ruit laws | and | | ဖ | and Transmission Lines | C04 | | pts. (Ur | | | Cliarac | lensuc | S OI LI a | 1151111551 | on lines | s by apply | ying the | Dasic Circ | cuit laws | anu | | ES06 | Trail | CO5 | | | | | wave i | phenon | nenon i | s forme | ed on tr | ansmissi | on lines | and be a | ble solve | the | | | . pu | | | ems of t | | _ | | | | | | | | | | | | | sal | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | Networks | CO1 | 3 | - | - | - | - | - | - | - | - | - | - | - | - | 2 | | | ξĶ | CO2 | 3 | 2 | - | - | - | - | - | - | - | - | - | - | - | 2 | | | ž | CO3 | 3 | 2 | 1 | - | - | - | _ | - | - | - | | - | | 3 | | | | CO4 | 3 | 3 | - | | | | | | | - | _ | - | - | 2 | | | | CO5 | 3 | 2 | - | - | - | - | - | - | - | - | - | - | - | 2 | | | | CO1 | | - | 1.0 | | onstruct | s with a | view o | of using | them i | n probler | n solving | g.(Remer | nber, | | | | 00 | 000 | | rstand, | | | 1 | .1 11 | | 1 | <u> </u> | 11 . | . /** | 1 | A 1 | | | | nin. | CO2 | | ze and | | | d use py | ython lis | sts in ex | kamples | s of pro | blem sol | vıng.(Un | derstand | , Apply, | | | | Ē | CO3 | | | | | onc in m | odular | nrogra | mmina | ucinan | wthon (/ | Apply Ar | nalyze v | aluate, ar | nd | | ES07 | ogra | COS | create | | tility Oi | Turicul | וו ווו כווע | louulai | progra | ıııııııg | using p | ytiioii. (<i>i</i> | Appiy, Ai | iaiyze, vo | iluate, ai | iu | | ES | Prc | CO4 | | • | ncepts o | of Obie | ct Orier | nted Pro | ogramn | ning to | solve th | e real-tir | ne probl | ems. (Ur | nderstand | 1. | | | Python Programming | | | , Analyz | • | . Jaje | 5.101 | | . o. w | | | | p. 001 | 5. (01 | | ···, | | | | CO5 | | | | compor | nents w | ith Rası | oberry | Pi using | Pythor | n APIs. (U | Indersta | nd. Apply | , Analyz | e and | | | ا ح | COS | IIIICIII | acc man | awaic | compoi | | | , | | , . , | | | - / - - - | | - cc. | | | P | CO3 | create | | awarc | COMPO | | | | | , . , | | | - / - - | ,, - , | J 4116 | | | Py | CO3 | | | avvare | compor | 101110 11 | | | | | | | - / - - | | | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |-------------|-------------------------------------|---|--|--|---|--|--|--
--|--------------------------------|--------------------------------------|---|--------------------------------------|---------------|-------------|------------------| | | | CO1 | 3 | 2 | 1 | 1 04 | 3 | | | | | 1010 | . 011 | 2 | 3 | 1 | | | | CO2 | 3 | 2 | | _ | 3 | - | - | | - | - | - | | 3 | | | | | | | 2 | 1 | - | | - | - | - | - | - | - | 2 | | 1 | | | | CO3 | 3 | | 1 | - | 3 | - | - | - | - | - | - | 2 | 3 | 1 | | | | CO4 | 3 | 2 | 3 | - | 3 | - | 2 | - | - | - | - | 2 | 3 | 1 | | | | CO5 | 3 | 2 | 3 | 3 | 3 | - | 2 | - | - | - | - | 2 | 3 | 1 | | | | 1 | | | | | | | | | | | | | | | | | | CO1 | | | | | | | | lization | | | | | | | | | | CO2 | | | | | | | | | | e traditio | ns. | | | | | | | CO3 | | | | | | | | odern Ir | ndia | | | | | | | | | CO4 | | | | | | fine arts | | | | | | | | | | | | CO5 | To kn | ow the | contrib | oution o | of scient | ists of | differen | it eras. | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | 33 | × | CO1 | - | 1 | - | - | - | _ | _ | 2 | 2 | _ | - | - | - | - | | MC03 | EITK | | | | | | | | 2 | | | | | | | | | _ | | CO2 | - | - | - | - | - | - | 1 | 2 | - | - | - | - | - | - | CO3 | - | 1 | - | - | - | - | 2 | 1 | - | - | - | - | - | - | CO4 | - | - | - | - | - | - | 3 | 3 | 3 | - | - | - | - | - | CO5 | - | - | - | - | - | - | 3 | 3 | 3 | - | - | - | - | - | · | | | l . | I | 1 | | l | 1 | | | | | l | | | | ı | 1 | | | | | I | | | I | I | I . | | | | | | | CO1 | | | | | | | • | | | RO.(Und | | | | | | | | CO1
CO2 | Gener | ate sine | e, squar | e and tr | iangula | | • | | | RO.(Und | | | | | | | | CO2 | Gener
Using | ate sine | e, squar
on gene | e and tr | riangula
Apply) | r wave | forms v | vith req | uired fr | equency | and amp | litude | | | | | Lab | | Gener
Using
Analy | rate sine
function
ze the o | e, squar
on gene | e and tr | riangula
Apply) | r wave | forms v | vith req | uired fr | | and amp | litude | | | | | uits Lab | CO2 | Gener
Using
Analy
etc. (A | rate sine
function
ze the of
Apply) | e, squar
on gene
characte | e and tr
rator. (A | riangula
Apply)
of diffe | r wave | forms v | vith req | uired fr | equency
s diodes, | and amp
transisto | litude
ors | | | | | Circuits Lab | CO2 | Gener
Using
Analy
etc. (A | rate sine
function
ze the of
Apply)
the dic | e, squar
on gene
characte | e and trator. (A | riangula
Apply)
of diffe | rent ele | forms v | vith req | uired fr | equency | and amp
transisto | litude
ors | | | | | nd Circuits Lab | CO2
CO3
CO4 | Gener
Using
Analy
etc. (A
Apply
suppli | rate sine
function
ze the capply)
the diction and | e, squar
on gene
characte
ode wor
amplifi | re and tr
rator. (A
eristics
king pr
ers etc. | riangula
Apply)
of diffe
rinciples
(Apply | r wave | forms v | vith requires devices ple circ | uired fr | equency
s diodes,
e rectifier | and amp
transistors, power | litude
ors | | | | 011 | es and Circuits Lab | CO2 | Gener
Using
Analy
etc. (A
Apply
suppli
Desig | rate sine
function
(ze the can
(Apply)
(the dical
(ses and can
(n the B. | e, squar
on gene
characte
ode wor
amplifi | re and tr
rator. (A
eristics
king pr
ers etc. | riangula
Apply)
of diffe
rinciples
(Apply | r wave | forms v | vith requires devices ple circ | uired fr | equency
s diodes, | and amp
transistors, power | litude
ors | | | | EC01L | | CO2
CO3
CO4 | Gener
Using
Analy
etc. (A
Apply
suppli | rate sine
function
(ze the can
(Apply)
(the dical
(ses and can
(n the B. | e, squar
on gene
characte
ode wor
amplifi | re and tr
rator. (A
eristics
king pr
ers etc. | riangula
Apply)
of diffe
rinciples
(Apply | r wave | forms v | vith requires devices ple circ | uired fr | equency
s diodes,
e rectifier | and amp
transistors, power | litude
ors | | | | EC01L | | CO2
CO3
CO4 | Gener
Using
Analy
etc. (A
Apply
suppli
Desig
(Appl | rate sine
function
ze the camply)
the diction the B.
y) | e, squar
on gene
characte
ode wor
amplifi
JT amp | e and trator. (A cristics whing prers etc. lifter ci | riangula
Apply)
of diffe
rinciples
(Apply
rcuit fo | rent eless to dessort the gi | forms veronic | devices ple circerating | uired fr
s such a
uits like | equency
as diodes,
e rectifier
ons and s | and amp
transistors, power | litude
ors | | | | EC01L | | CO2
CO3
CO4
CO5 | Gener
Using
Analy
etc. (A
Apply
suppli
Desig
(Appl | rate sine
function
(ze the of
Apply)
the dio
fies and
in the B.
y) | e, squar
on gene
characte
ode wor
amplifi | re and tr
rator. (A
eristics
king pr
ers etc. | riangula
Apply)
of diffe
rinciples
(Apply | r wave | ctronic ign sim | vith requires devices ple circ | uired fr | equency
s diodes,
e rectifier | and amp
transistors, power | litude
ors | PSO1 | PSO2 | | EC01L | | CO2 CO3 CO4 CO5 CO1 | Gener
Using
Analy
etc. (A
Apply
suppli
Desig
(Appl | rate sine
function
(ze the continue)
the diction the Bay) | e, squar
on gene
characte
ode wor
amplifi
JT amp | e and trator. (A cristics whing prers etc. lifier ci | riangula
Apply)
of diffe
rinciples
(Apply
rcuit fo | rent eles to describer the gi | ctronic gn sim | devices ple circ erating o | uired fr s such a uits like | equency as diodes, e rectifier ons and s | transistors, power pecification PO11 | litude
ors | - | 2 | | EC01L | Electronic Devices and Circuits Lab | CO2 CO3 CO4 CO5 CO1 CO2 | Gener
Using
Analy
etc. (A
Apply
suppli
Desig
(Appl | rate sine
function
ze the contact
Apply)
the diction the B.
y) | e, squar
on gene
characte
ode wor
amplifi
JT amp | e and trator. (A cristics whing prers etc. lifter ci | riangula
Apply)
of diffe
rinciples
(Apply
rcuit fo | rent eless to dessort the gi | ctronic ign sim | devices ple circerating | uired fr
s such a
uits like | equency
as diodes,
e rectifier
ons and s | and amp
transistors, power | litude
ors | PSO1 | 2 | | EC01L | | CO2 CO3 CO4 CO5 CO1 CO2 CO3 | Gener
Using
Analy
etc. (A
Apply
suppli
Desig
(Appl | rate sine function and the Bay) PO2 2 2 2 | e, squar
on gene
characte
ode wor
amplifi
JT amp | e and trator. (A cristics whing prers etc. lifier ci | riangula
Apply)
of diffe
rinciples
(Apply
rcuit fo | rent eles to describer the gi | ctronic gn sim | devices ple circ erating o | uired fr s such a uits like | equency as diodes, e rectifier ons and s | transistors, power pecification PO11 | litude
ors | - | 2
2
2 | | EC01L | | CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 | Gener
Using
Analy
etc. (A
Apply
suppli
Desig
(Appl | rate sine function from the diction of the B. The second of the second of the B. s | e, squar
on gene
characte
ode wor
amplifi
JT amp | e and trator. (A cristics white press etc. lifier ci | riangula Apply) of diffe rinciples (Apply reuit fo | rent eles to des: r the gi | ctronic ign sim | devices ple circ erating of | uired fr s such a uits like | equency s diodes, e rectifier ons and s | transistors, power pecification - | ors PO12 - | - | 2
2
2
3 | | EC01L | | CO2 CO3 CO4 CO5 CO1 CO2 CO3 | Gener
Using
Analy
etc.
(A
Apply
suppli
Desig
(Appl | rate sine function and the Bay) PO2 2 2 2 | e, squar
on gene
characte
ode wor
amplifi
JT amp | e and trator. (A cristics white press etc. lifier ci | riangula Apply) of diffe rinciples (Apply reuit fo | rent eless to dess | ctronic gn sim ven ope | devices ple circ erating of | uired fr s such a uits like | equency s diodes, e rectifier ons and s | transistors, power pecification - | ors PO12 - | - | 2
2
2 | | EC01L | | CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 | Gener
Using
Analy
etc. (A
Apply
suppli
Desig
(Appl | rate sine function from the diction of the B. The second o | e, squar
on gene
characte
ode wor
amplifi
JT amp | e and trator. (A cristics white press etc. lifier ci | riangula Apply) of diffe rinciples (Apply reuit fo | rent eles to des:) r the gi | ctronic gn sim | devices ple circ erating of | s such a uits like condition | equency s diodes, e rectifier ons and s PO10 | ransistors, power pecification | PO12 | -
-
- | 2
2
2
3 | | EC01L | | CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 | Gener
Using
Analy
etc. (A
Apply
suppli
Desig
(Appl
PO1
3
3
3
3 | rate sine function function for the diction of the B. (a) PO2 2 2 2 3 3 3 | e, squar on gene characte ode wor amplifi JT amp PO3 | e and trator. (A eristics whing press etc. lifter ci | riangula Apply) of diffe inciples (Apply rcuit fo | rent eles to des:) r the gi | ctronic gn sim | devices ple circ erating of | s such a uits like condition | equency s diodes, e rectifier ons and s | ransistors, power pecification | PO12 | -
-
- | 2
2
2
3 | | EC0 | Electronic Devices | CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO5 | Gener
Using
Analy
etc. (A
Apply
suppli
Desig
(Appl
PO1
3
3
3
3 | rate sine function function from the diction of the B. The second | e, squar on gene characte ode wor amplifi JT amp PO3 valuate | e and trator. (A cristics whing prers etc. lifter ci | riangula Apply) of diffe rinciples (Apply rcuit fo | rent eless to dess | roms vectronic gn simulation open o | devices ple circ erating of | s such a uits like condition | equency s diodes, e rectifier ons and s | ransistors, power pecification | PO12 | -
-
- | 2
2
2
3 | | EC0 | Lab Electronic Devices | CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO5 | Gener
Using
Analy
etc. (A
Apply
suppli
Desig
(Appl
PO1
3
3
3
3
3
Create | rate sine function and the Bay property of the diction of the Bay property of the diction of the Bay property of the Bay property of the diction of the Bay property o | e, squar on gene characte ode wor amplifi JT amp PO3 valuate rier ana | e and trator. (A cristics white presents of the cristics critical cristics of the critical cristics of the critical cri | riangula Apply) of diffe inciples (Apply reuit fo | rent eles to des: rent eles to des: r the gi PO6 MATLA | ctronic gn sim ven ope | PO8 | uired fr s such a uits like conditio | equency s diodes, e rectifier ons and s PO10 | ransistors, power pecification | PO12 | -
-
- | 2
2
2
3 | | EC02L EC01L | Electronic Devices | CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO5 CO1 CO2 CO3 | Gener
Using
Analy
etc. (A
Apply
suppli
Desig
(Appl
PO1
3
3
3
3
3
Create
Exam | rate sine function function from the Grand sine for | e, squar on gene characte ode wor amplifi JT amp PO3 valuate ormulat | e and trator. (Acristics of king press etc.) lifier ci PO4 signals alysis are analogous | riangula Apply) of differinciples (Apply) rcuit for service se | PO6 | reforms vectronic ign simulations ven open simulati | devices ple circ erating of | uired fr s such a uits like conditio | equency s diodes, e rectifier ons and s PO10 | ransistors, power pecification | PO12 | -
-
- | 2
2
2
3 | | EC0 | Lab Electronic Devices | CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO5 CO1 CO2 | Gener
Using
Analy
etc. (A
Apply
suppli
Desig
(Appl
PO1
3
3
3
3
3
Create
Exam
Asses
Invest | rate sine function and for the Barbara sine function and for the Barbara sine function and function and function and for the Barbara sine four signate distance functions and for the Barbara sine for the Barbara sine for the Barbara sine function and for the Barbara sine function and function and for the Barbara sine function and | e, squar on gene characte ode wor amplifi JT amp PO3 valuate rier ana ormulat igital si | e and trator. (Acristics of king press etc. lifier ci | riangula Apply) of diffe rinciples (Apply reuit fo | rent eles to des: rent eles to des: r the gi PO6 MATLA | reforms vectoric depth of the section sectio | PO8 | uired fr s such a uits like conditio | equency s diodes, e rectifier ons and s PO10 | ransistors, power pecification | PO12 | -
-
- | 2
2
2
3 | #### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |-------|-----------------------------------|-----|---------|-------------------|------------|-----------|----------|----------|-----------|-----------|-----------|-------------------|------------|----------|-----------|-----------| | | | CO1 | 3 | - | - | - | 3 | - | | - | - | 2 | - | - | 3 | 2 | | | | CO2 | 3 | - | - | 2 | - | - | 1 | - | - | - | - | - | 3 | 1 | | | | CO3 | 3 | - | 2 | - | - | - | | - | - | - | 1 | - | 3 | 2 | | | | CO4 | 3 | - | - | 2 | - | - | | - | - | - | - | 2 | 3 | 1 | | | | CO5 | 3 | - | 2 | 2 | - | - | | - | - | - | = | - | 2 | 2 | | | | CO1 | Idont | ify the | hosio r | xython. | constr | lote wi | th o vi | ory of n | icina th | em in p | roblom (| olvina | | | | | | CO2 | | | | | | | | | | of proble | | | | | | | qı | | | | | | | | | | | | | ıg | | | | | s Le | CO3 | | | | | | | | | | ing pyth | | 1.1 | | | | | Jing | CO4 | | | | | | | | | | ve the re | | problen | ns. | | | | mm | CO5 | Interf | ace hai | dware | compo | onents | with K | aspber | ry Pi us | sing Py | thon AF | '1S. | | | | | ES07L | grai | | I | I | | I | ı | ī | I | ı | I | ı | ı | ı | ı | | | ES | rog | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | п | CO1 | 2 | 2 | 3 | - | - | - | - | - | - | - | - | 1 | 2 | 2 | | | Python Programming Lab | CO2 | 2 | 2 | 3 | - | - | - | - | - | - | - | - | 1 | 2 | 2 | | | Py | CO3 | 2 | 2 | 3 | - | - | - | - | - | - | - | - | 1 | 2 | 2 | | | | CO4 | 2 | 2 | 3 | 2 | - | - | - | - | - | - | - | 1 | 2 | 3 | | | | CO5 | - | - | 3 | - | 3 | - | - | - | - | - | - | - | - | - | | | | | | | | | | | II-II | | | | | | | | | | ιο. | CO1 | Mathe | ematica | lly mod | lel the r | andom | phenon | nena an | d solve | simple | probabil | istic prol | blems.(U | nderstan | d, | | | ses | | Apply | | | | | | | | | | _ | | | | | | Ses | CO2 | | | | | | | es and c | ompute | statisti | cal avera | ges of th | ese rand | om | | | | Pro | | | oles.(Ar | | | | | | | | | | | | | | | tic | CO3 | | | | | • | | | | | | • | | expecta | tion, | | | nas | | | | | | | | | | | Analyse, <i>i</i> | | | | | | | jo: | CO4 | | | | | | | | | | omains.(| | | | | | BS07 | d St | CO5 | | | | | | | | to Cons | truct ar | nd analys | se the ma | athemati | cal mode | elling of | | BS | ariables and Stochastic Processes | | noise | sources | .(Defin | e, Anal | yse, Apı | oly, Con | npute) | | | | | | | | | | les | | 201 | 200 | 200 | 504 | 505 | 200 | 207 | | 500 | 2010 | 2011 | 2012 | 2004 | 200 | | | iab | 201 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | CO1 | 3 | 2 | 2 | - | - | - | - | - | - | 1 | - | - | - | 3 | | | Random V | CO2 | 3 | 2 | 3 | - | - | - | - | - | - | 1 | - | - | - | 3 | | | ndc | CO3 | 3 | 2 | 3 | - | - | - | - | - | - | 1 | - | - | - | 3 | | | Rai | CO4 | 3 | 2 | 2 | - | - | - | - | - | - | 1 | - | - | - | 3 | | | | CO5 | 3 | 2 | 2 | | - | - | - | -
C'1 | - | 1 . | - | | - | . 3 | | | | | | | | | low pa | ss and l | ngh pa | ss filter | ing and | design c | lippers a | nd clamp | ers for v | arious | | | | 001 | applic | cations(| Analyz | e) | | | | | | | | | | | | | its | CO1 | | 1 . | 1 | | 11.01 | | ., . | Dir | 13.50 | APPE | 1110 | • | | | | 4 | Analog Circuits | CO2 | | and A
fiers.(A | | | | er circu | iits usir | ig BJT | and MC | JSFET at | t high fre | quencies | and mul | tistage | | EC04 | ğ | CO3 | | | | | | (in amı | olifiers | and ana | alvsis of | differen | t tynes o | f feedha | ck | | | | alo | | | fiers.(Fa | | • | | ۵111 | | a aiit | , 515 01 | JC. C. | , pcs 0 | ccaba | | | | | An | CO4 | | ze and [| | | | of oscil | lator ci | rcuits (| Analyze | .) | | | | | | | | CO5 | | | | | | | | | | alysis of | single tu | ned | | | | | | | | s.(Unde | | | • | ci dilip | iiicis a | a peri | orni ali | ary 515 OI | onigic tu | cu | | | | | | | circuit | .5.(01100 | . i stariu | , Allaiy | , | | | | | | | | | | #### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | |------|----------------------------------|---|---------|-----------|------------------|-----------|----------|------------|-----------|-----------|-------------|-------------|-------------|-----------|------------|------------------| | | | CO1 | 2 | 3 | - | - | - | - | - | - | - | - | - | - | 2 | 2 | | | | CO2 | 2 | 3 | 2 | - | - | - | - | - | - | - | - | - | 2 | 2 | | | | CO3 | 2 | 3 | 3 | - | - | - | - | - | - | - | - | - | 2 | 3 | | | | CO4 | 2 | 2 | - | - | - | - | - | - | - | - | - | - | 2 | 3 | | | | CO5 | 1 | 2 | - | - | - | - | _ | _ | _ | - | - | - | 2 | 2 | | | | CO1 | Use tl | he conc | epts of | vectors | and sp | ace coo | rdinate | s to solv | ve the fi | ındamen | tal probl | ems
of st | atic elect | ric | | | /es | | fields | | • | | 1 | | | | | | 1 | | | | | | ۷a۱ | CO2 | Apply | y princij | oles of | static el | ectric f | ield to t | ındersta | and the | behavio | our of die | electrics a | and cond | uctors | | | | γp | CO3 | Unde | rstand t | he prin | ciples c | of stead | y magn | etic fiel | d | | | | | | | | | an | CO4 | Solve | the Ma | xwell's | equatio | ons of T | ime Va | rying fie | elds and | dobtain | the wav | e pheno | menon i | n various | media. | | | spi | CO5 | | | | | | | | | | tion phe | | | | | | EC05 | Electromagnetic Fields and Waves | | | | | <u></u> | | | - | | | · · | | | | | | Ш | tic | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | gne | CO1 | 3 | 2 | - | - | - | - | 2 | _ | _ | - | - | - | 3 | 2 | | | ma | CO2 | 3 | 2 | - | - | - | - | 2 | - | - | - | - | - | 3 | 2 | | | tro | CO3 | 3 | 2 | - | - | - | - | 2 | - | - | - | - | - | 3 | 2 | | | leci | CO4 | 3 | 2 | - | - | - | - | 2 | - | - | - | - | - | 3 | 2 | | | В | CO5 | 3 | 1 | - | - | - | _ | 2 | _ | - | - | - | _ | 3 | 1 | | | | CO5 3 1 2 3 1 CO1 Understanding the structural description and electrical characteristics of various digital logic families. | | | | | | | | | | | | | | | | | ם | CO2 | | ing bas | | | | _ | | | | | | 8 8 | , | | | | 7 | CO3 | | mentin | | | | | , | | | | | | | | | | ith | CO4 | | mentin | | | | | ng ICs a | nd VHI |)I code | | | | | | | | × (| CO5 | | ling of S | | | | | | | or code | | | | | | | 9 | Digital System Design with VHDL | | 11.000 | 6 01 0 | Jeque | | 410 451 | 1.6 1.63 a | | | | | | | | | | EC06 | De | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | _ | ma | CO1 | - | 2 | - | 3 | 2 | - | - | - | - | - | - | - | - | 3 | | | ystı | CO2 | 2 | - | _ | 3 | 3 | - | _ | _ | _ | _ | _ | _ | 2 | - | | | ıl S | CO3 | 2 | _ | _ | 3 | 3 | _ | _ | _ | _ | _ | _ | 2 | 2 | _ | | | gita | CO4 | 3 | _ | _ | 3 | 3 | - | _ | _ | _ | _ | _ | - | 3 | _ | | | οį | CO5 | 3 | _ | _ | 3 | 3 | _ | _ | _ | _ | _ | _ | _ | 3 | _ | | | | CO1 | | | | | | | | modul | ation so | | | | rious fund | | | | | | | s of AN | | | | | | ouul | ation 50 | iiciiics ai | ia Onder | ouna vai | Tous full | cionai | | | | CO2 | | | | | | | | lulation | schem | es and Co | ompare t | he perfo | mance of | f AM | | | | 002 | | nd PM | | _ | | | | | | os ana e | ompare t | ne perro | | 1 1 11/1, | | | | CO3 | | | | | | | | | | Determ | ine the p | erforma | nce of lin | e | | | | | | in term | _ | | | | | | | | | | | | | 7 | ၁ | CO4 | | | | | | • | | | | n scheme | e (Evalua | ting) | | | | EC07 | ADC | CO5 | | | • | | | | | | | | | | nission o | f digital | | | • | | | | | | | | | | _ | alyzing) | | | | . 3.5 | | | | | - - - | | | , | | | | | - 1 | , | | | | | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | CO1 | 3 | 2 | 2 | - | - | - | 1 | - | - | - | - | - | - | - | | | | CO2 | 3 | 2 | 1 | _ | _ | - | 1 | - | - | _ | _ | _ | _ | _ | | | | CO3 | 3 | 2 | 2 | _ | _ | _ | 1 | _ | _ | _ | _ | _ | _ | _ | | | | 555 | | | | | <u> </u> | | | l | l | | l | | <u> </u> | | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | CO4 | 3 | 2 | 2 | - | = | - | 1 | - | - | - | - | = | - | - | |-------|---------------------|------------|--------------------------|-----------------------------|------------------------------------|-------------------------------|----------------------|------------|-------------|---------------|-----------|----------------|------------|-----------|------------------------|-------| | | | CO5 | 3 | 2 | 1 | - | - | - | 1 | - | - | ı | ı | - | - | - | | | | CO1 | electr | ical sys | tems, c | oncepts | of feed | | Constru | | | | | | echanica
nd Apply | | | | | CO2 | Devel | | acquain | tance in | | | | respon | se in tir | ne-doma | in, in ter | ms of va | rious | | | | | CO3 | • | | | | s of abs | olute st | ability a | and rela | tive sta | bility by | different | approac | hes. | | | | tems | CO4 | Devel | | acquain | tance in | | | | | | | | | of variou | S | | ES08 | Control Systems | CO5 | Desig
per gi
conce | n the coven spe
pts of s | ontrol sy
ecificati
tate var | ystems
ons. De
iable ar | etermine
nalysis. | e the co | ntrollab | oility an | d obser | vability (| of the co | ntrol sys | ain analy
tem using | g the | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | CO1 | 3 | 2 | - | - | - | - | - | - | - | - | - | - | - | - | | | | CO2 | - | 2 | - | - | - | - | - | - | - | - | - | - | - | - | | | | CO3 | 3 | - | 3 | - | - | - | - | - | - | - | - | 2 | - | - | | | | CO4
CO5 | 3 | - | 3 | - | 2 | - | - | - | - | - | - | 2 | _ | - | | | | CO3 | | n and w | | e opera | | PC Cin | -
mit ac | -
lifferen | tiator o | -
nd integr | ator | | _ | _ | | | | CO2 | | | | | | r and cla | | | | na miegi | at01. | | | | | | | CO3 | | | | | | | | | | d two sta | ge RC co | ounled au | nnlifier | | | | Lak | CO4 | | n LC a | | | | TI CIIIICO | , com | 111011 30 | urce an | u two sta | ge Re c | oupicu ai | принсі | | | | its | CO5 | | | | | | mplifier | with a | nd with | out feed | lback | | | | | | EC05L | ircu | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | E | Analog Circuits Lab | CO1 | 2 | 2 | 3 | - | 3 | - | - | - | 3 | - | - | 2 | 3 | 2 | | | alo | CO2 | 2 | 2 | 3 | - | 3 | - | - | - | 3 | - | - | 2 | 2 | 2 | | | An | CO3 | 2 | 2 | 3 | - | 3 | - | - | - | 3 | - | - | 2 | 3 | 3 | | | | CO4 | 2 | 2 | 3 | - | 3 | - | - | - | 3 | - | - | 2 | 2 | 2 | | | | CO5 | 2 | 2 | 3 | - | 3 | - | - | - | 3 | - | - | 2 | 2 | 2 | | | | CO1 | Analy | ze diff | erent A | Analog | modu | lation & | demo | dulatio | n tech | niques | - | • | • | • | | | | CO2 | | | | | | g modu | | | | | | | | | | | | CO3 | 1 | | | | | digital | | | | ues. | | | | | | | | CO4 | | | | | | | | | | | gital mo | dulation | technic | ues. | | | | CO5 | Const | | | | | | | | | analog 8 | | | | | | | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | EC06L | ADC Lab | CO1 | 3 | 2 | - | - | 1 | - | - | - | - | - | - | - | 2 | 2 | | EC | ADC | CO2 | 3 | 2 | - | - | 1 | - | - | - | - | - | - | - | 2 | 2 | | | | CO3 | 3 | 2 | - | - | 1 | - | - | - | - | - | - | - | 2 | 2 | | | | CO4 | 3 | 2 | - | - | 1 | - | - | - | - | - | - | - | 2 | 2 | | | | CO5 | 3 | 2 | - | - | 1 | - | - | - | - | - | - | - | 2 | 2 | | | | | | | | | | | | | | | | | | | ### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | 1 | | CO1 | Under | rstand t | he basio | cs of HI | DL and | Apply | differen | t progr | amming | gapproac | ches for o | btaining | digital L | ogic | |---|-------------|--|--|---
--|--|---|--|---|--|--|---|---|--|--|------------------------------------| | | | | Gates | and ful | l adder | , Perfor | m simu | lation a | nd veri | fy the lo | ogical o | perations | s and also | o analyze | e the synt | hesis | | | q | | result | | | | | | | | | | | | | | | | . La | CO2 | Apply | progra | mming | approa | ach usin | g VHD | L for d | evelopi | ng deco | der, enco | oder and | multiple | xer, Perf | orm | | | ם | | simula | ation ar | nd verif | y the lo | gical op | peration | s and a | lso anal | yze the | synthesi | s result. | | | | | | | CO3 | Write | VHDL S | ource o | code fo | r highei | order | compar | ator an | d ALU, | Perform | simulati | on and v | erify the | logical | | | ith | | opera | tions ar | nd also | analyze | the sy | nthesis | result. | | | | | | | | | | > | CO4 | Use VI | HDL pro | ogramn | ning apı | proach | for dev | eloping | Flip Flo | ps, reg | isters and | d shift re | gister cir | cuits, Per | rform | | 07 | sigı | | simula | ation ar | d verif | y the lo | gical op | eration | s and a | lso ana | lyze the | synthes | is result. | | | | | EC | De | CO5 | Design | n differ | ent Cou | ınters a | nd shif | t registe | er coun | ters usi | ng VHD | L Source | code, Pe | erform si | mulation | and | | | шe | | verify | the log | ical ope | erations | and al
so analy	ze the	synthes	sis resu	lt.							yst		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2			II S	CO1	1	-	-	3	3	-	-	-	-	-	-	-	3	3			gite	CO2	1	-	-	3	3	=-	-	-	-	-	-		3	3			اق	CO3	1	-	-	3	3	-	-	-	-	-	-	-	3	3				CO4	1	-	-	3	3	-	-	-	-	-	-	-	3	3				CO5	1	-	-	3	3	-	-	-	-	-	-	-	3	3																													III-I											CO1	Under	retand t	he DC 4	and AC	analyci			al Amn	lifier a	nd perfor	mance n	arameter	s of OP-	Δmn				CO1						d level,		ат Аттр	mici, a	na perior	тапсс р	arameter	.5 01 01 -2	Amp				CO2								ng on-a	mp {A	pply leve	el KL3}						JS	CO3										ng Op-Ar		lvsis KL4	1}				tio	CO4										og IC's {L							ica	CO5										verters.						308	ldd		0000.							6 006	,		(.PP.)	.,	,·			E	CA		PO1	PO2	PO3	PO4	PO5	PO6	ı — —										arl	CO1							PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2			<u>e</u>		3	2	-	-	-	_	PO7 -	PO8 -	PO9 -	PO10 -	PO11 -	PO12 -	PSO1	PSO2			=. □				-						PO9 - -			PO12 - -	PSO1 2 2			1	Li	CO2	3	2		-		-	-	-	PO9 - -	-	-	-	2 2				Lin	CO2 CO3	3 - 2	2	-	- 2 -	-	-	-	-	-	-	-	-	2 2 3	-			Lir	CO2	3 -	2	-	- 2					-	- - -	- - -		2 2				Lin	CO2 CO3 CO4	3 - 2 2	2	-	- 2 - 3	- - -	- - -	- - -	- - -	-	- - -	- - -	- - -	2 2 3 3	- - -			Lir	CO2 CO3 CO4	3 - 2 2 2	2 3 3		- 2 - 3 2									2 2 3 3 2	- - - -			Lin	CO2 CO3 CO4 CO5	3 - 2 2 2	2 3 3 - -	- - - -	- 2 - 3 2	- - - - of mic								2 2 3 3	- - - -			Lin	CO2 CO3 CO4 CO5	3 - 2 2 2 2 Under {Under	2 3 3 - -	- - - - he arch	2 3 2 itecture	of mice)	- - - - -	- - - - ssor an	- - - - -	- - - - - pasic ha		- - - - - componer	- - - - -	2 2 3 3 2	- - - -			Lin	CO2 CO3 CO4 CO5	3 - 2 2 2 2 Under {Under Demo	2 3 3 - erstand therestand	- - - - he arching leve	2 3 2 itecture el, KL1	of mics		- - - - - ssor and	- - - - - d their l	- - - - - pasic ha	- - - - - rdware c	- - - - - componer	- - - - - nts and o	2 2 3 3 2	- - - -			Lin	CO2 CO3 CO4 CO5	3 - 2 2 2 2 Under {Under Demo	2 3 3 - rstand therstand	- - - - he arching leve programus inte	- 2 - 3 2 2 itecture el, KL1 mming rfacing		- - - - roproce	- - - - - ssor an	- - - - d their l	- - - - - pasic ha	- - - - - essors. {	- - - - - ompone Analysis processo	- - - - nts and o	2 2 3 3 2 peration.	- - - - - KL4}				CO2 CO3 CO4 CO5 CO1	3 - 2 2 2 Under {Under Analyz Under	2 3 3 	- - - - he arching leve programus inte	2 3 2 itecture el, KL1 mming rfacing	of mice skills ir technice		- - - - ssor and bly lang	- - - - d their l guage fo them fo	- - - - - - or proce or the d	- - - - - essors. {	- - - - - componer Analysis processo	- - - - nts and o level, KI or {Analysing level,	2 2 3 3 2 peration. 4} sis level, KL1, KL2	- - - - - KL4}		600		CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4	3 - 2 2 2 Under {Under Analyz Under	2 3 3 	- - - - he arching leve programus inte	2 3 2 itecture el, KL1 mming rfacing	of mice skills ir technice		- - - - ssor and bly lang	- - - - d their l guage fo them fo	- - - - - - or proce or the d	- - - - erdware constant	- - - - - componer Analysis processo	- - - - nts and o level, KI or {Analysing level,	2 2 3 3 2 peration. 4} sis level, KL1, KL2	- - - - - KL4}		EC09 EC07L MPMC Linear IC Applications Digital System Design with VHDL Lab		CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4	3 - 2 2 2 Under {Under Analyz Under	2 3 3 	- - - - he arching leve programus inte	2 3 2 itecture el, KL1 mming rfacing	of mice skills ir technice		- - - - ssor and bly lang	- - - - d their l guage fo them fo	- - - - - - or proce or the d	- - - - erdware constant	- - - - - componer Analysis processo	- - - - nts and o level, KI or {Analysing level,	2 2 3 3 2 peration. 4} sis level, KL1, KL2	- - - - - KL4}		EC09		CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4	3 - 2 2 2 Under {Under Demo	2 3 3	- - - he arching leve programus inte he architate how	2 3 2 itecture el, KL1 mming rfacing hitecture w the discontinuous control of	of mice skills in technice of mice	roproce a assemi	- - - - ssor an bly lang d apply roller a	d their l	- - - - - or proce or the d r opera-	- - - - essors. { A lesign of tion {Unc	- - - - - - - - Analysis processo derstandi	- - - - nts and o level, KI or {Analysing level, zing level	2 2 3 3 2 peration. (A) sis level, KL1, KL2	- - - - - KL4}		EC09		CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO5	3 - 2 2 2 Under {Under Demo	2 3 3	he arching lever programus inte he architate how	2 3 2 itecture el, KL1 mming rfacing hitecture w the discontinuous control of	of mice skills in technice of mice	roproce a assemi	- - - - ssor and bly lang d apply roller a	d their l	- - - - - or proce or the d r opera-	- - - - essors. { A lesign of tion {Unc	- - - - - - - - Analysis processo derstandi	- - - - nts and o level, KI or {Analysing level, zing level	2 2 3 3 2 peration. (A) sis level, KL1, KL2	- - - - - KL4}		EC09		CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO5	3 - 2 2 2 2 Under {Under Analyz Under Able to PO1 3	2 3 3 rstand therstand to instrate various rstand to illustrate polymer p	he arching level programus inte he archinate how	- 2 - 3 2 itecture el, KL1 mming rfacing nitecture w the di	of mice skills in technice of mice fferent PO5	roproce a assemi		d their loguage for them for their x proces		- - - - - essors. { A esign of tion {Unc nd debug			2 2 3 3 2 peration. (A) sis level, KL1, KL2 I, KL3}	- - - - - KL4} }		EC09		CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO5	3 - 2 2 2 Under {Under Demo Analyz Under Able to PO1 3 3 3	2 3 3	he arching leve programus inte he architate how	2 - 3 2 itecture el, KL1 mming rfacing itecture w the di	of mice skills ir technice of mice pos e of mice ifferent	roproce asseminates and crocont on ARM PO6 -	ssor and apply roller a M Corte	d their loguage for them for nd their x proces	contractions and the contractions are sensible se	- - - - essors. { / esign of tion {Unc nd debug			2 2 3 3 2 peration. (A4) sis level, (KL1, KL2 I, KL3)	- - - - - KL4} }		EC09		CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO5 CO1 CO2 CO3	3 - 2 2 2 Under {Under Demo Analyz Under Able to PO1 3 3 3 3 3	2 3 3	he arching level programus interested however the architecture at the arch	2 - 3 2 itecture el, KL1 mming rfacing itecture w the di	of mice skills ir technice of mice pos e of mice ifferent	roproce n asseminates and crocont on ARM PO6	ssor and apply roller a M Corte	d their land their land their land their land their land their land possible possibl	contractions and the contractions are sensible se	- - - - essors. { / esign of tion {Unc nd debug			2 2 3 3 2 peration. 4} sis level, KL1, KL2 I, KL3} PSO1 -	- - - - - KL4} }	#### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING**			CO1	Identi	fy the A	Antenna	Param	eters											--------	----------------------	------------	--------	----------------------	----------	-----------	---------------------	----------	----------	-------------	----------	-------------	-------------	-----------	-------------	--------			ioi	CO2						na and	its corr	espondi	ing radi	ation cha	racteristi	ics					and Wave Propagation	CO3			-		ous for			_									pa	CO4									ntennas								Pro	CO5		•			of radio											0	Š			.,																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
								EC10	×		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2			pu	CO1	3	-	3	-	-	-	1	-	-	-	-	-	-	-			as a	CO2	3	-	3	-	-	-	1	-	-	-	-	-	-	-			Antennas	CO3	3	-	3	-	-	-	1	-	-	-	-	-	-	-			nte	CO4	3	-	3	-	-	-	1	-	-	-	-	-	-	-			A	CO5	3	-	3	-	-	-	1	-	-	-	-	-	-	-						•		•		•	•	•		•	•	•	•	•				CO1	.{App	olying le	evel, Kl	L3}									nd proces					CO2					n of the Underst				S devic	es to det	ermine tl	ne delays	of the ci	rcuits				CO3	Elaboi	rate the	opera	tion of I	MOS cir	cuits to	design	the sin	ngle-sta	ge amplit	fiers {Cre	ating lev	el, KL6}				us Su	CO4		ze the s zing lev		-	mic CM	IOS des	ign aspo	ects to	develop	combin	ational a	nd seque	ential circ	cuits		EC11	VLSI Design	CO5		rstand t rstandir			al aspe	cts of C	PLD and	d FPGA,	, and se	veral adv	anced te	echnolog	ies. {				VLS																				PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2			•	CO1	2	-	2	-	2	-	-	-	-	-	-	-	-	-				CO2	3	2	2	1	-	-	-	-	-	-	-	-	-	-				CO3	3	2	2	1	-	-	-	-	-	-	-	-	-	-				CO4	3	2	2	1	-	-	-	-	-	-	-	-	-	-				CO5	3	2	-	-	2	-	-	-	-	-	-	-	-	-																						CO1	Able 1	to realiz	ze the c	concept	of Obj	ect Ori	ented F	rogran	nming d	& Java P	rogramn	ning, Ar	rays					CO2					concept		va such	as ope	erators,	classes,	objects,	inheritai	nce, pack	tages,			₹	CO3	Apply	the co	ncept o	of excep	ption ha	andling	and In	put/ Οι	utput or	perations							Æ	CO4					ions of											_	Through JAVA	CO5	Able	to Anal	yze &	Design	the co	ncept o	f Event	Handl	ing and	l Abstrac	et Windo	w Toolk	it			OE01	S																	\sim			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		٦	Ŧ					1		_	-	-	-	-	-	-	1	1		5	PS Th	CO1	-	2	1	1	<u> </u>	<u></u>	<u></u>					<u> </u>				5	OOPS Th	CO1 CO2	1	2	2	2	1	-	-	-		-	_	-	2	1		5	OOPS Th		-				1 1	-	-	-		-	-					5	OOPS Th	CO2	-	2	2	2				- - -		- - -	- - -		2	1	#### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING**			CO1						erence i		and Ex	ample r	etworks,	characte	eristics o	f transmi	ssion		----------	--------------------------	------------	-------	----------	---------------	-----------	-------------	----------	----------	-------------------	----------	-------------	------------	------------	-----------	-------				CO2								d Medi	um Aco	cess Cont	trol Proto	ocols					S	CO3						outing A											or	CO4						ıble unr			ssion								et∧	CO5						us appl										EC12	Computer Networks							- 11										Ш	ute		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2			ηdu	CO1	2		-	-	-	-	-	-	-	-	2	-	2	2			Ç	CO2	2	2	_	_	-	-	_	-	-	_	2	-	2	2				CO3	2	2	2	_	-	-	_	-	-	-	2	2	2	2				CO4	-	-	2	-	-	-	-	-	-	-	2	2	2	2				CO5	-	-	2	-	-	-	-	-	-	-	2	2	2	2		<u> </u>			1	<u>I</u>		1	1	1	1	1	1	<u>l</u>								CO1	Unde	rstand t	he hasi	Mathe	ematical	Lonerat	ions of	Operati	ional A	mplifier								CO2						respon											Q	CO3										ing Oner:	ational A	mplifier					Га	CO4					•								nvestiga	te			ons	004		ent Vol				crators	using C	peranc	7 XII	ipiirici ai	na 555 1	inici & I	nvestiga	ic			atic	CO5						Conver	ters and	l Digita	ıl – Ana	log Conv	erters					EC08L	olic		120,0	op um	01 0110 11	ilaio 5	Digital		tors are	<i>.</i> 13 15110	1 1110	105 0011						E	Applications Lab		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2				CO1	3	-	-	-	-	-	-	-	-	-	-	-	-	-			Linear IC	CO2	2	_	_	_	_	_	_	_	_	-	_	_	_	_			Li	CO3	3	3	_	3	_	_	_	_	_	-	_	_	_	_				CO4	2	3	_	3	_	_	_	_	_	-	_	_	_	_				CO5	2	3	_	3	_	_	_	_	_	_	_	_	_	_		J					<u> </u>			1	<u> </u>	<u> </u>		I	<u>I</u>	I.	<u>I</u>	I.				CO1	Under		ogical a	ınd aritl	hmetic	function	ns perfo	rmed b	y 8086	and use t	hem to i	mplemen	t process	sing				CO2	Demo	nstrate	the inte	erfacing	g of I/O	with 80	86 for	real-tin	ne appli	cations.								CO3										convers	ion opera	ations						CO4		_								nd arrays							Q	CO5										ng simul							Ġ					_												1600	MC La						PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2		EC09L	MPMC La		PO1	PO2	PO3	PO4	105									FJUZ		EC09L	MPMC Lab	CO1	PO1 3	PO2	PO3	PO4 -	-	-	-	-	-	-	-	3	3	2		EC09L	MPMC La	CO1 CO2		PO2 -	PO3 - 3	- PO4	- 3	- 2	-	-	-	-	-					EC09L	MPMCLa		3	-	-	PO4 -	-	-	-	-	-	-	-	3	3	2		EC09L	MPMC La	CO2	3 -	-	3	-	3	2	-	-	-	-	-	3	3	2 3		EC09L	MPMC La	CO2 CO3	3 -		3	-	- 3 3	2 -		-				3 3 3	3 3 3	2 3 3	### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING**									-	er a example a second	Secondario Philips	***************************************	red Departin	(200 2)						----------	---	--	--	--------------	----------------	-------------	----------------	-----------	-----------------------	--------------------	---	--------------	--------------------	------------	--------------	--------------	--				CO1										simulato	r								CO2		ze the s																	CO3	Imple	ement co	ombina	tional a	nd sequ	ential c	ircuit d	esigns (on FPG	A board								q	CO4	Perfo	rm trans	sient, D	C and A	AC anal	ysis of	a desig	ned circ	cuit usir	ng mento	r graphic	es.						La	CO5	Illust	rate lay	out for	basic d	ligital c	ircuits a	t transi	stor lev	el								11	Design Lab																		EC111	esi		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2			ш		CO1	-	-	2	3	3	-	-	-	-	-	-	-	3	2				VLSI	CO2	_	_	_	3	3	_	_	_	_	_	_	_	2	3				-	CO ₂	-	_	3	3	3	_	_	_	_	_	_	- -	2	3					CO3	-	-	3	3	3		_		-				3	2						-	-		-	3	-	-	-	-	-	-	-							CO5	-	-	3	-	3	-	-	-	-	-	-	-	3	3											I	II-II												CO1	Analy	ze the I	Discrete	Time	Signals	and Sv	stems&	Apply	the diff	erence e	quations	concept	in the an	alysis						of Discrete time systems O2 Know the importance of FFT algorithm for computation of Discrete Fourier Transform &Use the FFT algorithm for solving the DFT of a given signal																		CO2					T algor	ithm fo	r comp	utation	of Disc	rete Four	ier Tran	sform &	Use the F	FT																							ing	CO3	Design a Digital filter (FIR&IIR) from the given specifications Able to realize the digital filters																	SSe																			300	-						sino II	se the N	Aultirat	e Proce	ssing cor	cents in	various	annlicatio	ons			<u>6</u>	Pr	Know the need of Multirate Processing, Use the Multirate Processing concepts in various applications &Learn the concepts of DSP Processors																	EC13	nal		CCDCu	III the c	опеери	or DB	1 11000	55015												Sig		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2				tal	CO1	3	102	2	104	103	100	1	100	103	1010	1011	1012	1301	1302				igit			-		-	-	-		-	-	-	-	-	-	-					CO2	3	-	1	-	-	-	1	-	-	-	-	-	-	-					CO3	3	-	2	-	-	-	1	-	-	-	-	-	-	-					CO4	3	-	2	-	-	-	1	-	-	-	-	-	-	-					CO5	3	-	1	-	-	-	1	-	-	-	-	-	-	-																																
CO1	To ea	uipped	with th	e know	ledge o	f estima	ting the	e Dema	nd and	demand o	elasticitio	es for a r	roduct.	,					CO2													the least	cost				sis			ination	_					r 00		ро								alys	CO3					differe	nt mark	ets and	Price C	Output o	letermina	tion und	er vario	ıs market					An			tions ar							I									lai	CO4										nting too	ls for an	alvsis.						Managerial Economics and Financial Analysis	CO5										of capital			gues for					Fin	003		ion mak		III v CBtII	nem pro	geet pro	ровать	** 1011 011	e neip (or capitar	ouagem	ig teemin	ques for				03	pu		400101	. JII IIIGN	₆ .														HSM03	S a		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2			HS	ä	CO1	101	1 02	103	104	105		107	1 00		1010	1011	1 012	1301	1 302				Juo		-	-			- -	1		2	1	2	2	-	-	-				Ecc	CO2	-	-	-	-	-	1	-	2	1	2	2	2	-	-				rial	CO3	-	_	-	-	-	1	-	_	1	-	-	-	-	-				ıge	CO4	-		-	-	-	1	-	2	1	2	2	-		_				ane	CO5	-	-	-	-	-	1	-	2	1	2		3	-	-				Σ												3																											1	1	1	l]		1	1	1]					### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING**									A CONTRACTOR	Service of the second of	Security Paris			77.1177					------	-------------	--	--	---------------------------	----------	-----------	-----------	--------------	--------------------------	----------------	-------------	-----------	------------	------------------	-------------------	------------------				CO1		rstand f omager				charact	eristics	of recta	angular	wavegui	de and tr	ansmissi	on lines	through				CO2						ical cha	racteris	tics of o	circular	wavegui	des throi	ıgh elect	romagen	tic field			50	002					trip ant		10000110					<i></i>	2 0 1 1 1 1 2 1 1				Engineering	CO3							ork pro	perties	of pass	ive micro	owave co	mponen	ts				ee	CO4					crowave												gir	CO5										to analyz	e and me	easure va	rious			EC14	En						ve bencl					•						E	3ve																		Microwave		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2			cro	CO1	3	2	-	-	-	-	-	-	-	-	-	-	3	3			Σ	CO2	3	2	-	-	-	-	-	-	-	-	-	-	3	3				CO3	3	3	ı	-	-	-	-	-	-	-	-	-	3	3				CO4	3	2	1	-	-	-	-	-	-	-	-	-	2	3				CO5	3	2	-	-	-	-	-	-	-	-	-	-	2	3			•	-	•			•		•	•	•	•			•	•	•				CO1	Unde	rstand	inner w	orking	s of cell	lular sys	stem an	d Desc	ribe the	element	s of cellu	ılar syste	ems.					CO2	Categorize different interferences and to Evaluate different antennas using at cell site and mobile units																	CO3																		CO4																				lular sy									-					01	СМС	CO5	Devel	op and	Design	new te	chnolog	gies in v	wireless	cellula	ır systei	ns.						PE01	5																				PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2				CO1		3	-	-	-	-	-	-	-	-	-	-	3	2				CO2	2	3	3	-	-	-	-	-	-	-	-	-	3	2				CO3	3	3	3	-	-	-	-	-	-	-	-	-	2	3				CO4	2	3	3	-	-	-	-	-	-	-	-	-	3	2				CO5		3	3	-	-	-	-	-	-	-	-	3	3	3																						CO1	Descr	ihe the	archited	cture an	nd progr	ammin	g of AR	M prod	cessor									CO2					pedded s			in proc										CO3	-				of real t			system	design								1				abic co.								ems					1			_		m desig	m techi	nanee t		יונטט טטנוי	waie it			C1110.							CO4	Use th	ne syste					1									7	SC		Use th	ne syste					1			stem con						,E02	RTOS	CO4	Use the To im	ne syste plemen	t a mod	lel real-	-time ap	plicatio	on using	gembed	lded-sy	stem con	cepts	P∩12	PS∩1	PSO2		PE02	ERTOS	CO4 CO5	Use the To im	ne syste			time ap		1					PO12	PSO1	PSO2		PE02	ERTOS	CO4 CO5	Use the To im	ne syste plemen PO2	t a mod	lel real-	-time ap	plicatio	PO7	PO8	PO9	PO10	PO11	2	3	1		PE02	ERTOS	CO4 CO5 CO1 CO2	Use the To im PO1 2 2	ne syste plemen	t a mod	PO4 -	PO5 2 -	PO6	PO7	PO8	PO9 - 1	stem con	PO11	2	3	1		PE02	ERTOS	CO4 CO5 CO1 CO2 CO3	Use the To im	PO2	PO3	PO4 - 2	PO5 2 - 2	PO6	PO7	PO8	PO9 - 1	PO10	PO11	2 1 2	3 3 3	1 1 3		PE02	ERTOS	CO4 CO5 CO1 CO2 CO3 CO4	PO1 2 2 3	PO2	PO3 3	PO4 - 2 2	PO5 2 -	PO6	PO7	PO8	PO9 - 1 1 -	PO10	PO11 1	2 1 2 1	3 3 3 3	1 1 3 1		PE02	ERTOS	CO4 CO5 CO1 CO2 CO3	Use the To im PO1 2 2	PO2	PO3	PO4 - 2	PO5 2 - 2	PO6	PO7	PO8	PO9 - 1	PO10	PO11	2 1 2	3 3 3	1 1 3	### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING**			CO1									metic o	perations	s on sign	als and o	btain the			-------	-------------------------------	-------------------	--	--	----------------	-----------	-----------	------------	----------	---------	----------	-----------	------------	------------	------------	------						nse of the															q	CO2										computat							Digital Signal Processing Lab	CO3			•	•			functio	ons and	design	FIR, and	IIR filter	rs for bar	nd pass, b	oand			sin			low pas															ĕ	CO4		ruct the														EC13L	Pro	CO5	Unde	rstand t	he arch	itecture	of TM	S320C6	5713 DS	SP Proc	essors a	and emplo	oy it for	real time	processi	ng.		EC	а			1		1	1	1	1	1	1		1		1	1			ign		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2			S JE	CO1	3	-	ı	-	-	-	-	-	-	-	-	-	3	1			git	CO2	3	-	-	-	-	-	-	-	-	-	-	-	2	3			Ō	CO3	3	-	-	-	3	-	-	-	-	-	-	-	1	3				CO4	3	-	-	-	2	-	-	-	-	-	-	-	1	2				CO5	3	-	1	-	2	-	-	-	-	-	-	-	2	2								ı	1	ı	1		1		1		1	1				CO1	Defin	e differ	ent type	es of Int	tellectua	al Prope	erty Rig	hts										CO2		Define different types of Intellectual Property Rights Classify different Intellectual Property Rights & Describe Copy Right Laws																CO3	Classify different Intellectual Property Rights & Describe Copy Right Laws Explain importance of Patents, Patent Infringement																	CO4	_	rstand i							Laws									CO5		ibe Cat														4	~		Besch	100 040	<u>egorres</u>	or eye	or Earn	4114 11	11012									MC04	IPR		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2				CO1	3	-	-	-	-	-	_	2	-	-	-	_	-	-				CO2	_	-	2	-	_	_	-	2	-	-	-	-	-	-				CO3	3	2	-	-	_	2	-	2	-	-	-	-	-	-				CO4	3	-	2	-	-	2	-	2	-	-	-	-	_	-				CO5	3	_	-	-	2	_	-	2	-	-	-	-	-	-								<u>I</u>		<u>I</u>																														CO1	Unde	rstand t	he adva	nced te	chnolog	gy and o	develop	ment as	spects									CO2										f the pro	ject to be	e develop	ed.					CO3		necessa																CO4										e the app	lication						cts	CO5										tal conte							oje		1	<i>y</i>	F	r		- <u>r</u>		01			**						Mini Projects		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2			ji j	CO1	3	-	-	3	-	-	-	-	2	-	-	3	2	2			2	CO2	2	2	3	-	_	_	_		3	_	3	3	2	2					2	3	3	3	_	3	_		2		2	3	3	3				CU3	,)				_	_							CO4				3				2					3					CO3 CO4 CO5	2 3	3	3	-	3	3	-	2 2	2 2	-	3	3	3	3 2	### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING**										IV-I							
----------|--------------------------|-----|---------|-------------|------------|------------|----------|---|-----------|-----------|---------------------------------------|--------------|------------|-------------|------------|--------| | | | CO1 | Apply | manag | gement | and mo | tivation | theorie | es to rei | novate t | the prac | tice of m | anagem | ent. | | | | | | CO2 | Expla | in conc | | quality | manag | ement a | nd use | process | s contro | | | | ls of qual | ity | | | Jce | CO3 | Appra | | functio | | | | | | | h high lev | vels of ch | nange in 1 | the | | | 4 | Management Science | CO4 | | fy activ | | th their | interde | ependei | ncy and | l use sc | hedulin | g technic | ques of p | roject m | anageme | ent | | HSM04 | men | CO5 | Devel | op glob | al visio | n and n | nanagei | ment sk | ills botl | h at stra | ategic le | evel and | interper | sonal lev | el. | | | | ge | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | eu e | CO1 | - | - | - | - | PU3 | 1 | - | 3 | 3 | 3 | POII | 2 | P301 | P302 | | | Š | CO2 | | _ | - | | - | 1 | | 3 | 3 | 3 | 3 | 2 | | - | | | | CO2 | | _ | - | - | - | 1 | | 3 | 3 | 3 | 3 | 2 | | - | | | | CO3 | - | _ | - | _ | - | 1 | | 3 | 3 | 3 | 3 | 2 | - | _ | | | | CO4 | _ | - | | - | _ | 1 | | 3 | 3 | 3 | 3 | 2 | - | - | | | | CO3 | - | - | - | - | | т_ | _ | 3 | 3 | 3 | | | | _ | | | | CO1 | Devel | lop the | Radar r | ange ec | uation | and Sol | ve anal | ytical p | roblem. | | | | | | | | | CO2 | Expla | in the v | vorking | of CW | & FM | CW Rac | dar and | its app | lication | S. | | | | | | | | CO3 | | | | | | | | | | rforman | ce. | | | | | | | CO4 | | | oncept | | | | | | | | | | | | | | ing | CO5 | | | | | | | | | | | valuate | the vario | us compo | onents | | | Engineering | | | | ivers ar | | | | | - 1 | | | | | | | | PE03 | gin | | | | | | | | | _ | | | | | | | | B | En | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | Radar I | CO1 | 3 | 2 | - | - | - | - | 1 | - | - | - | - | 2 | 2 | 3 | | | E | CO2 | 3 | 2 | - | - | - | - | ı | - | - | - | - | 2 | 2 | 3 | | | | CO3 | 3 | 2 | - | - | - | - | ı | - | - | - | - | 2 | 2 | 3 | | | | CO4 | 3 | 2 | - | - | - | - | - | - | - | - | - | 2 | 2 | 3 | | | | CO5 | 3 | 2 | - | - | - | - | - | - | - | - | - | 2 | 3 | 3 | | | | CO1 | Fe::1: | iorizo ::: | i+b b = :: | 0.00:00:00 | nto of | المائمة المائمة | maga :=: | | a a a a a a | 1:ff ~ ~ ~ + | imass | onoforce | • | | | | | CO1 | | | | | • | | | | | | | ansform | | | | | 90 | CO2 | doma | | simage | proces | sing ted | nnique | s like ir | nage er | nnancer | nent bot | n in spai | tiai and fi | requency | , | | | ssin | CO3 | | | ith basi | c resto | ration t | echniau | ies | | | | | | | | | | ce | CO4 | | | | | | • | | hnique | s applic | able to v | arious ta | asks | | | |)5 | Pro | CO5 | | | | | | <u>. </u> | | | | ression r | | | | | | PE05 | age | | - Onaci | - Starrar t | | 4 101 00 | | | | J.1.20 10 | · · · · · · · · · · · · · · · · · · · | | | | | | | | E E | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | Digital Image Processing | CO1 | 2 | 2 | - | - | - | - | - | - | - | - | - | - | 2 | 2 | | | | CO2 | 2 | 3 | _ | - | - | - | | - | | - | - | | 3 | 2 | | | | CO3 | 3 | 2 | - | - | - | - | 1 | | - | - | - | - | 3 | 2 | | | | | | | | | | | | | | | | | | L. | #### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | CO4 | 3 | 2 | - | - | 2 | - | - | - | - | - | - | 3 | 3 | 2 | |---------|---------------|-------|---------|------------|------------|-----------------------|-----------|---------------------|---------|-----------|-----------|------------|------------|---|-------|----------| | | | CO5 | 3 | 3 | - | - | 3 | 2 | - | - | - | - | - | 3 | 3 | 3 | | | | | | | I | I | ı | ı | | | | I. | I | | | <u>I</u> | | | | CO1 | Descri | ibe the | functio | nality o | f variou | ıs comp | onents | in fibe | r optic o | communi | cation sy | /stem. | | | | | | CO2 | | | | | | in opti | | | . 0 0 0 0 | | | , | | | | | _ | CO3 | | | | | | | | | unders | standing | on solicii | ng techni | iques | | | | Communication | CO4 | | | - | | | | | | | different | | | ques | | | | ca. | CO5 | | | | | | stem a | | | | annerene | аррпсат | 10113 | | | | | n | | Onaci | i staria t | iic acsi | 811 01 0 | ptical 3 | ysterii a | iia vvb | IVI COITC | Сріз | | | | | | | PE04 | E | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | PE | on | CO1 | 101 | 3 | 103 | 104 | 103 | 100 | 107 | 108 | 103 | 1010 | 1011 | 3 | 3 | 2 | | | 0 | COI | 2 | 3 | _ | _ | _ | _ | _ | _ | _ | _ | - | 3 | 3 | 2 | | | tics | CO2 | 2 | 3 | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | 3 | 2 | | | Optical | CO3 | 3 | 2 | 1 | _ | _ | _ | _ | _ | _ | _ | _ | _ | 2 | 3 | | | | CO4 | 3 | 3 | 1 | _ | - | - | _ | _ | _ | _ | _ | _ | 2 | 3 | | | | CO5 | 3 | 2 | 2 | _ | _ | _ | _ | _ | _ | _ | _ | _ | 3 | 3 | | | <u> </u> | 1 203 | 1 - | | | <u> </u> | <u> </u> | <u> </u> | |] |] | <u> </u> | <u> </u> | | | | | | | CO1 | Undo | rctand + | he con | ant of | Λrtifici- | al Neuro | nn . | | | | | | | | | | | CO2 | | | | | | nd learr | | atenior | | | | | | | | | | CO2 | - | | | tworks
Artificia | | | .o.rl.c | | | | | | | | | CO4 | | | | | | | | | | | | | | | | ~ | _ | CO5 | Under | rstand S | ome ap | phicatio | on or Ar | rtificial | veurai | networ | KS | | | | | | | OE02 | ANN | | DO1 | PO2 | DO2 | DO4 | DOE | DOC | DO7 | DO0 | DO0 | DO10 | DO11 | DO12 | DCO1 | DCO2 | | 0 | ٨ | 601 | PO1 | | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | | CO1 | 2 | 2 | 1 | - | - | - | - | - | - | - | - | - | 1 | 2 | | | | CO2 | - | 1 | - | 3 | - | - | - | - | - | - | - | - | 1 | 3 | | | | CO3 | 2 | 2 | 2 | - | - | - | - | - | - | - | - | - | 2 | - | | | | CO4 | 1 | - | 2 | 2 | - | - | - | - | - | - | - | - | - | 2 | | | | CO5 | - | 3 | 1 | - | - | - | - | - | - | - | - | - | 2 | - | | | | CO4 | T.1. /* | .C 1 | d a second | 4404 - 1 ¹ | 1 ' | | : | | ore D | | | | | | | | | CO1 | | _ | | | | | | | | sive com | ponents. | | | | | | | CO2 | • | | | | | rent mi | | | | | | | | | | | | CO3 | | | | | | nicrowa | | | nponen | ts. | | | | | | | | CO4 | | | | | | rent opt | | | ,• • | C:1. | · · · | 41 - 11 1 | | | | | MW&OC Lab | CO5 | Evalu | ate vari | ous opt | ical fib | er parai | meters a | ind ana | lyze an | optical | fiber cor | nmunica | tion link. | | | | EC14L | ၁၀ | | 504 | | | | l | | | | | 2010 | 2011 | | | | | E | | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | Σ | CO1 | 3 | 2 | - | - | - | - | - | - | 2 | - | - | 2 | 2 | 2 | | | | CO2 | 3 | 3 | - | - | - | - | - | - | 2 | - | - | 2 | 2 | 2 | | | | CO3 | 3 | 3 | - | - | - | - | - | - | 2 | - | - | 2 | 3 | 3 | | | | CO4 | 3 | 3 | - | - | - | - | - | - | 2 | - | - | 2 | 2 | 3 | | | | CO5 | 3 | 3 | - | - | - | - | - | - | 2 | - | - | 2 | 3 | 3 | | | :1 | | 1 | | | | | | | | | | | | | | | Į į, | [| CO1 | | | | | | gy and | | | | | | | | | | Project | tage | CO2 | | | | | | | _ | | | of the pro | - | e develo | ped. | | | ۵ | Σ | CO3 | Build r | necessa | ry desig | n speci | fication | ns and d | ocume | nts for | the cho | sen proje | ect | | | | | | _ | · | | | | | | | | · | | | · | | | · | #### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | T = - | 1 | | | | | Mark Control | second division in | Contractor - Date | | red Departin | or and | | | | |---------|---|--|---------------|---------------------------------|---------------------------|-----------------------|---|-----------------------------------|---|---|---|--|---|--|---| | | | | | | _ | | | - | | | | | | | | | | CO5 | Summ | arize th | ne basic | needs | and des | sign asp | ects to | procee | d for p | oduct de | evelopm | ent. | | | | | | T | 1 | T | ı | T | T | 1 | T | T | T | T | | 1 | Т | | | | | PO2 | PO3 | | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | | - | PSO2 | | | CO1 | 3 | - | - | 3 | - | - | - | - | - | - | - | 3 | 2 | 2 | | | CO2 | 1 | 3 | 3 | 3 | 3 | 3 | - | - | 3 | 3 | - | 3 | 3 | 3 | | | CO3 | 2 | 3 | 3 | 3 | 3 | 3 | - | - | 3 | 3 | - | 3 | 3 | 3 | | | CO4 | 3 | | 3 | - | - | 3 | - | 3 | | 3 | - | 3 | 3 | 1 | | | CO5 | - | - | 2 | - | - | - | - | - | - | - | - | 3 | 1 | 1 | | | | | | | | | | V-II | | | | | | | | | | CO1 | Unde | rstand t | the orig | in, basi | c conce | pts of s | atellite | commi | unicatio | ns, Cate | gorize lo | ok angle | s, and Di | scuss | | | | | | _ | | | - | | | | | _ | · · | | | | | CO2 | Analy | se the v | /arious | satellite | subsys | stems a | nd thei | r functi | onalitie | S | | | | | | ے | CO3 | Evalua | ate sate | ellite lin | k desigi | n and A | pply th | e conce | pts of r | nultiple | access a | and vario | us types | of multi | ple | | atio | | acces | s techni | iques in | satellit | e syste | ms. | | | | | | | | - | | Jice | CO4 | Explai | in earth | station | techno | ologies | and ear | th segn | nent. | | | | | | | | Jun I | CO5 | | | | | | | | | | | | | | | | m | | | | | | | | | | | | | | | | | S | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
PO11 | PO12 | PSO1 | PSO2 | | tellite | CO1 | - | 2 | - | - | - | - | - | - | - | - | - | 3 | 2 | 3 | | Sa | CO2 | - | 2 | - | - | - | - | - | - | - | - | - | - | 3 | 3 | | | CO3 | - | 3 | - | - | - | - | - | - | - | - | - | - | 3 | 2 | | | CO4 | - | - | 3 | - | - | - | - | - | - | - | - | - | 2 | 2 | | | CO5 | - | - | 3 | - | - | - | - | - | - | - | - | - | 2 | 2 | CO1 | | | | | | sed on | the anal | ysis of | air poll | utants an | d relate | the pol | luting pl | ume | | tro | CO2 | Identi | fy suita | ble con | trol me | thods d | ependir | ng on th | e sever | ity and | type of a | ir polluti | on. | | | | Con | CO3 | Classi | fy solid | wastes | and ide | entify su | uitable | collecti | on and | transfe | r mechar | nisms. | | | | | જ | CO4 | | | | d waste | e mana | gement | metho | ds base | ed on th | e nature | of solid | waste ar | nd the qu | antities | | uti | CO5 | | | | of noise | e pollut | ion and | sugges | t meth | ods for | mitigatir | ng the pr | oblem | | | | Po | | | · | | | | | | | | | • | | | | | ntal | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | mei | CO1 | 3 | 2 | - | - | - | - | - | - | - | - | - | - | 2 | - | | lon | CO2 | 2 | 3 | 3 | - | - | - | - | - | - | - | - | - | 2 | 2 | | nvi | CO3 | 1 | 3 | - | - | - | - | - | - | - | - | - | - | - | - | | ш | CO4 | 1 | 2 | 3 | - | - | - | - | - | - | - | - | - | 2 | - | | | CO5 | 2 | 3 | - | - | - | _ | - | - | - | - | _ | _ | 2 | _ | | | Environmental Pollution & Control Satellite Communication | CO3 CO4 CO5 CO2 CO3 CO4 CO5 CO4 CO5 CO1 CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO5 CO3 CO4 CO5 CO3 CO4 CO5 | CO5 Summing | CO5 Summarize the PO1 PO2 | CO5 Summarize the basic | PO1 PO2 PO3 PO4 | CO5 Summarize the basic needs and described | PO1 PO2 PO3 PO4 PO5 PO6 | PO1 PO2 PO3 PO4 PO5 PO6 PO7 | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 | PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 | #### **DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING** | | | CO1 | To pr | ovide a | n intens | ive & i | n-depth | learnin | g to the | e studen | ts in fie | eld of ent | repreneu | rship | | | |------|-----------------------------------|-----|--------------|---------------------|-----------|-----------|-----------|----------|----------|----------|-----------|------------|----------|-----------|------------|-------| | | | CO2 | To en | courage | e studer | nts to op | t for se | lf empl | oyment | as an a | ılternati | ve caree | option | | | | | | Ħ | CO3 | To en | able stu | idents t | o appre | ciate the | e dynan | nic chai | nges ha | ppening | g in the e | conomy | | | | | | pme | CO4 | | | he stud | ents ab | out the | role of | entrepre | eneursh | ip in th | e growth | and ecor | nomic de | velopme | nt of | | | lelo | | the na | | | | | | | | | | | | | | | 40 | Entrepreneurial Skill Development | CO5 | To an activi | | ne role (| of gove | rnment | and no | n-gover | nment | instituti | ons in su | pporting | entrepre | neurial | | | OE04 | al Sk | | • | | | | | | | | | | | | | | | | euri | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | ren | CO1 | 2 | 3 | 3 | - | - | - | - | 1 | | - | 3 | 2 | - | - | | | trep | CO2 | - | - | - | - | - | 3 | - | 1 | 3 | - | 2 | 2 | - | - | | | 굡 | CO3 | - | - | - | - | - | 3 | - | 1 | - | - | 2 | 2 | - | - | | | | CO4 | - | - | - | - | - | 3 | 2 | 1 | - | - | 2 | 2 | - | - | | | | CO5 | - | 2 | - | 3 | - | - | - | 1 | - | 1 | 2 | 2 | - | - | CO1 | | | | | | | | | gineerin | | | | | | | | | CO2 | | | | | | | | | | | | develop | ed. | | | | | CO3 | | | - | | | | | | | sen proje | | | | | | | 7- | CO4 | | lop apt o
implem | | | hnical | knowle | dge to i | mplem | ent/cod | e the app | lication | and deplo | by the pro | oject | | | Stage-2 | CO5 | | nstrate | | | nprehei | nsively | with ne | cessary | tools | | | | | | | | t St | | • | | • | <u>v</u> | | <u> </u> | | <u> </u> | | | | | | | | | Project (| | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | | | Pro | CO1 | 3 | - | - | - | - | - | - | - | - | - | - | 3 | 2 | 2 | | | | CO2 | 2 | - | 2 | | 3 | - | - | - | 3 | 3 | 3 | 3 | 2 | 3 | | | | CO3 | 1 | - | 3 | 3 | 3 | - | - | - | - | - | - | 3 | 2 | 3 | | | | CO4 | 2 | - | 3 | 3 | 2 | - | - | 2 | - | - | - | 3 | 2 | 2 | | | | CO5 | - | - | - | - | - | - | - | 3 | - | 3 | - | 3 | 2 | 2 |